Abstract:
A method and apparatus for determining the concentration of an analyte in a sample is provided. This method involves combining enhanced chemiluminescence with microchip capillary electrophoresis or microchip liquid chromatography.
Abstract:
A method and apparatus for real-time, simultaneous, quantitative measurement for detecting a single nucleotide polymorphism in a target nucleic acid is provided. This method involves combining a polymerase chain reaction (PCR) technique with invader assay technique.
Abstract:
A reactor for the quantitative analysis of target nucleic acids using an evanescent wave detection technique and a method for the quantitative analysis of target nucleic acids are provided. The reactor includes a substrate with a cavity, a buffer layer arranged over the substrate, a quartz cover plate arranged over the buffer layer, and inlet and outlet ports. The reactor is thermally and chemically stable for PCR processing and suitable for an evanescent wave detection technique.
Abstract:
The disclosure relates to a microarray reader that includes a light source which emits light and beam shaping elements positioned near the light source to direct the light. The microarray reader further includes a microarray that is at least formed of an optical substrate and a reaction chamber in contact with the optical substrate. A buffer solution is encapsulated by the optical substrate and the reaction chamber and a holder aligns the microarray relative to the light source such that when light hits the buffer solution molecules in the buffer solution are excited to emit fluorescent light. A temperature control component is thermally engaged with the holder such that the temperature control component adjusts the temperature of the buffer solution. The microarray reader further includes a sensor that receives the fluorescent light emitted by the excited molecules in the buffer solution to generate a signal.
Abstract:
A microarray reader (500) includes a light source (501) which emits light and beam shaping elements (502) positioned near the light source (501) to direct the light. The microarray reader (500) further includes a microarray (504) that is at least formed of an optical substrate (505) and a reaction chamber (506) in contact with the optical substrate (505). A buffer solution (507) is encapsulated by the optical substrate (505) and the reaction chamber (506) and a holder (508) aligns the microarray (504) relative to the light source (501) such that when light hits the buffer solution (507) molecules in the buffer solution (507) are excited to emit fluorescent light. A temperature control component (509) is thermally engaged with the holder (508) such that the temperature control component (509) adjusts the temperature of the buffer solution (507). The microarray reader (500) further includes a sensor (510) that receives the fluorescent light emitted by the excited molecules in the buffer solution (507) to generate a signal. The microarray reader (500) provides a simple and low-cost solution to overcome the drawback of improper alignment of the microarray (504) on the temperature control component (509).
Abstract:
A reactor for the quantitative analysis of target nucleic acids using an evanescent wave detection technique and a method for the quantitative analysis of target nucleic acids are provided. The reactor includes a substrate with a cavity, a buffer layer arranged over the substrate, a quartz cover plate arranged over the buffer layer, and inlet and outlet ports. The reactor is thermally and chemically stable for PCR processing and suitable for an evanescent wave detection technique.
Abstract:
A method and apparatus for real-time, simultaneous, quantitative measurement for detecting a single nucleotide polymorphism in a target nucleic acid is provided. This method involves combining a polymerase chain reaction (PCR) technique with invader assay technique.
Abstract:
A method and apparatus for determining the concentration of one or more microbes in a sample is provided. This method involves filtering a sample through a filter inside a sample tube to retain the one or more microbes on the filter. The resulting filtrate, which contains or produces adenosine triphosphate, is passed through the sample tube and enters the reporter region. In the reporter region, the adenosine triphosphate in the filtrate comes in contact with a transparent porous matrix, which includes a luciferin-luciferase complex. The adenosine triphosphate interacts with the luciferin-luciferase complex to provide light response, which is measured by a detector. The light response is compared with a calibration curve to determine the total concentration of one or more microbes in a sample.
Abstract:
An apparatus includes a porous membrane for retaining antigens from a sample as the sample passes through the membrane. The apparatus also includes a first binding region within the membrane. The first binding region includes antibodies associated with a first antigen of interest. At least some of the antigens retained in the membrane are brought into contact with the first binding region by applying an electrophoresis field across the membrane. The porous membrane could also include an electrophoresis buffer. A presence of the first antigen of interest could be detected by exposing the first binding region to a chemiluminescent reagent, and a quantity of the first antigen of interest could be determined by performing a chemiluminescent assay on the binding region.
Abstract:
An apparatus includes a porous membrane for retaining antigens from a sample as the sample passes through the membrane. The apparatus also includes a first binding region within the membrane. The first binding region includes antibodies associated with a first antigen of interest. At least some of the antigens retained in the membrane are brought into contact with the first binding region by applying an electrophoresis field across the membrane. The porous membrane could also include an electrophoresis buffer. A presence of the first antigen of interest could be detected by exposing the first binding region to a chemiluminescent reagent, and a quantity of the first antigen of interest could be determined by performing a chemiluminescent assay on the binding region.