摘要:
A cold-rolled steel sheet includes, on a percent by mass basis: C: 0.0010% to 0.0030%, Si: 0.05% or less, Mn: 0.1% to 0.3%, P: 0.05% or less, S: 0.02% or less, Al: 0.02% to 0.10%, N: 0.005% or less, and Nb: 0.010% to 0.030% and the remainder composed of Fe and incidental impurities, wherein r values in a rolling direction and a direction perpendicular to the rolling direction are within a range of 1.0 to 1.6, and a mean value Elm of elongations in the rolling direction, a direction at 45° with respect to the rolling direction, and the direction perpendicular to the rolling direction is 40% or more, where Elm=(ElL+2×ElD+ElC)/4 ElL: elongation in the rolling direction, ElD: elongation in the direction at 45° with respect to the rolling direction, and ElC: elongation in the direction perpendicular to the rolling direction.
摘要:
A cold-rolled steel sheet includes, on a percent by mass basis: C: 0.0010% to 0.0030%, Si: 0.05% or less, Mn: 0.1% to 0.3%, P: 0.05% or less, S: 0.02% or less, Al: 0.02% to 0.10%, N: 0.005% or less, and Nb: 0.010% to 0.030% and the remainder composed of Fe and incidental impurities, wherein values in a rolling direction and a direction perpendicular to the rolling direction are within a range of 1.0 to 1.6, and a mean value Elm of elongations in the rolling direction, a direction at 45° with respect to the rolling direction, and the direction perpendicular to the rolling direction is 40% or more, where Elm=(ElL+2×ElD+ElC)/4 and ElL: elongation in the rolling direction, ElD: elongation in the direction at 45° with respect to the rolling direction, and ElC: elongation in the direction perpendicular to the rolling direction.
摘要:
A cold-rolled steel sheet with excellent bending workability has a component composition of 0.025% or less C, 0.1% or less Si, 0.05% to 0.5% Mn, 0.03% or less P, 0.02% or less S, and 0.01% to 0.1% sol. Al on a mass basis, the remainder being Fe and unavoidable impurities; a microstructure that is a ferrite rolling texture; a tensile strength TS of 390 MPa or more; a thickness of 0.4 mm or more; and a sheet thickness direction ultimate ductility of 1.3 or more, wherein the sheet thickness direction ultimate ductility is the natural logarithm Ln(t0/t1) of the ratio of the thickness t0 of an untested steel sheet to the thickness t1 of the fracture surface of the tested steel sheet as determined by a tensile test.
摘要:
Process and apparatus for refining silicon by treatment in a graphite vessel with irradiation with an electron beam while removing impurity elements by evaporation. A single graphite vessel is used, or plural graphite vessels are arranged in sequence. During treatment in successive graphite vessels, molten silicon is poured in succession from one vessel to another. Use of graphite vessels improves heat efficiency, prevents contamination and produces refined silicon containing very low contents of impurities.
摘要:
An object of the present invention is to provide a process and apparatus for the continuous flow production of polycrystalline silicon from metallic silicon or silicon oxide as a raw material and also for the manufacture of a wafer by using it, which process and apparatus permit the mass production at a low cost. The above object can be attained by the manufacture of polycrystalline silicon and a silicon wafer for a solar cell by the following steps: (A) smelting metallic silicon under reduced pressure, carrying out solidification for the removal of the impurity components from the melt, thereby obtaining a first ingot, (B) removing the impurity concentrated portion from the ingot by cutting, (C) re-melting the remaining portion, removing boron and carbon from the melt by oxidizing under an oxidizing atmosphere, and blowing a mixed gas of argon and water to carry out deoxidization, (D) casting the deoxidized melt into a mold, and carried out directional solidification to obtain a second ingot, and (E) removing the impurity concentrated portion of the ingot obtained by directional solidification by cutting.
摘要:
Method for producing highly purified silicon for use in solar cells by a single solidification purification, pouring silicon into a mold and gradually fractionally solidifying it while solidifying the liquid surface, followed by purifying the solidified silicon by zone melting or continuous casting using an electromagnetic mold, or by zone melting in combination with continuous casting, and optionally causing directional solidification to concentrate impurities, leaching and recycling.