摘要:
An SiC whisker-reinforced Si.sub.3 N.sub.4 composite material comprising a sintered body of an Si.sub.3 N.sub.4 matrix having dispersed therein SiC whiskers, wherein said SiC whiskers are uniaxially orientated; a process for producing an SiC whisker-reinforced Si.sub.3 N.sub.4 composite material which comprises mixing (1) SiC whiskers having a coating comprising an oxide of at least one metallic element selected from the group consisting of Be, Mg, Ca, Sr, and Ba of the group 2A; Sc, Y, and La of the group 3A; Ti, Zr, and Hf of the group 4A; and Li, Al, and Si with (2) Si.sub.3 N.sub.4 powder, and sintering the mixture; and a process for forming said metal oxide coating on the surface of whiskers which comprises dipping whiskers in a solution of an inorganic or organic salt of at least one metallic element selected from the group consisting of the elements of the groups 2A, 3A, and 4A of the periodic table, Li, and Al and heat treating the whiskers having adhered thereto the metallic salt at a temperature not less than the thermal decomposition temperature of said metallic salt. The SiC whisker-reinforced Si.sub. 3 N.sub.4 composite material exhibits improved strength particularly at high temperatures and improved toughness.
摘要:
A slide member has a sliding surface made of ceramic and a has surface roughness of not more than 1.0 .mu.m in center line average roughness Ra. The ceramics includes a silicon nitride sintered body which contains crystal grains having a linear density of at least 35 per 30 .mu.m in length with a boundary phase volume ratio of not more than 15 volume %, and which contains pores of not more than 20 .mu.m in maximum diameter in a content of not more than 3%. In a method of manufacturing the slide member, it is possible to ensure smoothness of the sliding surface by grinding the sliding surface and thereafter heating the ceramic in an either an inert gas or atmospheric air. A slide member that can be used under severe sliding conditions of high-speed sliding or the like and that has excellent wear resistance is obtained. Even if the slide member is used for to a sliding part of a compressor or the like which employs a fluorocarbon containing no chlorine as a cooling medium, it is possible to prevent the occurrence of seizure and abnormal wear on the sliding surface.
摘要:
A composite bearing structure can withstand high speed rotation has first, second and third bearing components. The first bearing component supports a radial impact force applied to a rotator during rotation, and is made of an inner ring (1) and an outer ring (2) of silicon nitride ceramic sintered bodies. The second bearing component supports an axial load applied to the rotator while maintaining a required clearance between itself and the rotator and is made of two permanent magnets (12, 13) positioned thrustdirectionally opposite to each other. The third bearing component maintains a radial rotational accuracy of the rotator, and is made of a radial dynamic pressure producing groove (5) provided on a cylindrical surface of the inner ring (1).
摘要:
A silicon nitride composite sintered which comprises crystal grains of silicon nitride and/or sialon having an average minor axis length of 0.05 to 3 .mu.m and an aspect ratio of 10 or less and foreign particles dispersed in the crystal grains and/or the grain boundary phase, said particles having a thermal expansion coefficient of 5.times.10.sup.-6 /.degree.C. or more and an average particle size of 1 to 500 nm. The sintered body is produced by wet mixing silicon nitride powder, at least two sintering aids selected from among Y.sub.2 O.sub.3, Al.sub.2 O.sub.3, AlN and MgO and at least one compound selected from among the oxides, nitrides, carbides and silicides of the elements, excluding Si and C, of the groups IIa, IIIa, IVa, Va, VIa, IIb, IIIb and IVb of the Periodic Table to form a molding; and heat treating under the specified conditions. The sintered body can also be obtained by coating the surfaces of silicon nitride crystal grains with an organometallic compound convertible to the above foreign particles, heat treating and sintering with the sintering aid.
摘要翻译:一种氮化硅复合材料,其包含平均短轴长度为0.05〜3μm,长径比为10以下的氮化硅和/或赛隆的晶粒和分散在晶粒和/或晶界中的异物的氮化硅复合体 所述颗粒的热膨胀系数为5×10 -6 /℃以上,平均粒径为1〜500nm。 烧结体通过湿式混合氮化硅粉末,至少两种选自Y 2 O 3,Al 2 O 3,AlN和MgO的烧结助剂和选自元素的氧化物,氮化物,碳化物和硅化物中的至少一种化合物,除Si和 C,元素周期表IIa,IIIa,IVa,Va,VIa,IIb,IIIb和IVb族中的一种,形成一个成型体; 并在规定条件下进行热处理。 烧结体也可以通过用可转化为上述外来颗粒的有机金属化合物涂覆氮化硅晶粒表面,用烧结助剂进行热处理和烧结来获得。
摘要:
A composite bearing structure that has a high rotational accuracy and that can withstand high-speed rotation comprises first bearing means, second bearing means, third bearing means and fourth bearing means. The first bearing means supports a radial impact force which is applied to a rotator during rotation, and is formed by an inner ring (1) and an outer ring (2) consisting of silicon nitride ceramics sintered bodies. The second bearing means supports an axial load which is applied to the rotator while maintaining a prescribed clearance with the rotator, and is formed by a magnetic bearing body of two permanent magnets (12) and (13) which are thrust-directionally opposed to each other. The third bearing means maintains the radial rotational accuracy of the rotator, and is formed by a radial dynamic pressure producing groove (5) which is formed in a cylindrical surface of the inner ring (1). The fourth bearing means maintains the thrust-directional rotational accuracy of the rotator, and is formed by an air dome portion (100) which is confined in a semi-closed state by the inner ring (1), the outer ring (2) and a cover (4).
摘要:
A slide member has a sliding surface made of ceramic and has a surface roughness of not more than 1.0 .mu.m in center line average roughness Ra. ceramic includes a silicon nitride sintered body, which contains crystal grains having a linear density of at least 35 per 30 .mu.m in length with a boundary phase volume ratio of not more than 15 volume %, and which contains pores of not more than 20 .mu.m in maximum diameter in a content of not more than 3%. In a method of manufacturing the slide member, it is possible to ensure smoothness of the sliding surface by grinding the sliding surface and thereafter heating the ceramic in either inert gas or an atmospheric air. A slide member that can be used under severe sliding conditions of high-speed sliding or the like and that has excellent wear resistance is obtained. Even if the slide member is used for a sliding part of a compressor or the like which employs a fluorocarbon containing no chlorine as a cooling medium, it is possible to prevent the occurrence of seizure and abnormal wear on the sliding surface.
摘要:
This invention provides a hydrodynamic bearing assembly which realizes a high rotation rate in a stable manner with robust rigidity. The hydrodynamic bearing assembly has a total radial gap of 3 microns or less for preventing contact with the thrust bearing. The thrust bearing is a pump-out type, and the radial bearing has offset grooves on the surface thereof to supply fluid flow to the thrust bearing. A depth ratio of the grooves relative to the diameter of the shaft is preferably 0.005 or less to avoid reduced translational rigidity.
摘要:
The invention provides porous silicon nitride ceramics that having uniform, fine closed pores and a manufacturing method thereof. Metal Si powder is mixed with a sintering additive, followed by thermal treatment, which is a pre-process for forming a specific grain boundary phase. Two-stage thermal treatment is thereafter performed by microwave heating at a temperature of 1000° C. or more. The metal Si powder is thereafter subjected to a nitriding reaction from its surface, the metal Si is thereafter diffused to nitride formed on the outer shell thereof such that porous silicon nitride ceramics having uniform, fine closed pores can be produced. Having a high ratio of closed pores and being superior in electrical/mechanical characteristics, the porous silicon nitride ceramics can display excellent characteristics if used, for example, for an electronic circuit board that requires an anti-hygroscopicity, a low dielectric constant, a low dielectric loss, and mechanical strength.
摘要:
A bearing having a high thrust rigidity, an excellent vibration resistance, and a simple structure, as well as a spindle motor using such a bearing are provided. A groove or grooves 7 are disposed to either one of a shaft 2 and a sleeve 3 which form a radial bearing portion, to thereby exert thrust force in a direction which brings two mutually facing members at a thrust bearing portion closer to each other. The groove 7 is inclined with respect to an axis, and the inclination exerts, between the shaft 2 and the sleeve 3, thrust force in a thrust direction. The groove 7 may be herringbone-shaped or other type of groove which can generates such thrust force. It is also possible to further enhance the thrust force utilizing a negative pressure, with an upstream side of the radial bearing portion for introducing fluid such as air shielded from outside air.
摘要:
A hydrodynamic bearing assembly with improved activation features is provided. The opposing surfaces in the radial and thrust bearings have grooves 2 and 5 with depths shallower gradually towards the downstream flow of the fluid passing therethrough, for generating the uniform dynamic pressure distribution. This allows the dynamic pressure distribution to be leveled so as to increase the bearing supporting force and prevent the dew grom being generated. Any one or both of the opposing surfaces in the thrust bearing has the inclined surface from the inner portion towards the outer portion so that the gap between the opposing surfaces is extended to about 2 microns. This causes the contacting points thereof when halted to be closer to the axis so that the friction can be reduced and the driving torque can be reduced when restating the bearing assembly. This also prevent the contact in the thrust bearing due to the external oscillating motion. Further, a second thrust plate 11 is secured on the other end surface of the sleeve 3 opposite to the thrust plate 4 so that the total weight of the rotational member is supported between the second thrust plate 11 and the end surface of the shaft 1 when halted, thereby reducing the friction at the time of activating.