摘要:
This invention provides a cell pattern recovery tool comprising a base material layer having a surface subjected to easy adhesion treatment, a temperature responsive polymer layer that is provided on the base material layer and has a surface subjected to silane treatment, and a cell adhesion inhibiting material layer provided on the temperature responsive polymer layer. According to the present invention, a cell pattern can be rapidly recovered while maintaining the cell pattern stably and reliably under minimally invasive conditions for the cells.
摘要:
This invention provides a cell pattern recovery tool comprising a base material layer having a surface subjected to easy adhesion treatment, a temperature responsive polymer layer that is provided on the base material layer and has a surface subjected to silane treatment, and a cell adhesion inhibiting material layer provided on the temperature responsive polymer layer. According to the present invention, a cell pattern can be rapidly recovered while maintaining the cell pattern stably and reliably under minimally invasive conditions for the cells.
摘要:
In accordance with the present invention, an implant in which cells are arranged in a fine pattern that is available for immediate implantation and that does not need to be removed after implantation is provided. The present invention relates to a cell-containing sheet, which comprises cells and a support comprising a bioabsorbable material, in which the support has a cell adhesion protein-containing layer on the surface thereof and the cells form a pattern on the support.
摘要:
A luneberg lens, which is configured by combining a plurality of lens parts, has a problem on keeping of a combined condition of lens parts and securement of good moisture prevention, and displacement of lens parts not only becomes a cause of cost-up but also has a bad influence on an electric performance, and furthermore, intrusion of moisture and humidity deteriorates an electric performance, and therefore, these problems are solved by a simple and inexpensive method. A lens portion 2, which is configured by combining lens parts of spherical core and spherical shell-like resin foams, is configured by a luneberg lens which is sealed by a synthetic resin film 3 which is formed along a surface of that lens portion 2 and in which a thickness is 100 μm or less and of which own relative dielectric constant is higher than a relative dielectric constant of the outermost layer of the above-mentioned lens portion.
摘要:
A main object of the present invention is to provide a cell transfer substrate capable of transplanting cells, maintaining a pattern as it is, on a living body tissue or the like, even when: the size of the cell sheet is extremely small; the cells are cultured sparsely; the cells are in a form of a small colony; or the cells are cultured in a pattern, for example, as a blood vessel, a vessel network such as a lymphatic vessel, or a nerve network, and to provide a substrate for cell transfer to be used for the cell transfer substrate. In order to achieve the above-mentioned object, the present invention provides a substrate for cell transfer comprising: a polymer base material; an intermediate layer formed on the polymer base material; and a cell transfer layer formed on the intermediate layer.
摘要:
Lens antenna equipment including a hemispherical Luneberg lens made of dielectric, a reflector which has a size larger than the lens diameter and which is to be provided on a face equivalent to a cross-section made by halving a globular shape of the lens, a primary feed to be arranged at a focus part of the lens, and an arm for holding the primary feed, all of which are unitarily assembled together, wherein the holder of the arm can be turned about an axis that is a perpendicular line passing the center of the lens when the reflector is attached to its installation position in a substantially perpendicular manner with respect to the ground surface, and wherein the primary feed can be moved along the surface of the lens, on a plane that is perpendicular to the axis passing the center of the lens, and on a semicircle centering the axis.
摘要:
Ceramic powder having a BET specific surface area within a range of from 0.1 to 2.0 m2/g as measured according to the N2 absorption method and an average particle diameter within a range of from 0.8 to 100 μm and composed of titanium oxide or a titanate; a dielectric composite material containing a synthetic resin and the ceramic powder; and a dielectric antenna with an antenna part formed of a conductor circuit provided on a dielectric substrate formed from the dielectric composite material.
摘要:
An object of the present invention is to provide a means capable of transferring a cell sheet, a cell pattern or the like to a desired material at a high speed. The present invention provides a substrate for cell culture comprising a base and a cell adhesive region formed on a surface of the base, wherein the cell adhesive region is formed of a film that is rendered cell adhesive by applying an oxidation treatment and/or a decomposition treatment to a cell-adhesion inhibitory hydrophilic film containing an organic compound having a carbon-oxygen bond.
摘要:
Ceramic powder having a BET specific surface area within a range of from 0.1 to 2.0 m2/g as measured according to the N2 absorption method and an average particle diameter within a range of from 0.8 to 100 μm and composed of titanium oxide or a titanate; a dielectric composite material containing a synthetic resin and the ceramic powder; and a dielectric antenna with an antenna part formed of a conductor circuit provided on a dielectric substrate formed from the dielectric composite material.
摘要:
To produce a cell culture membrane having biocompatibility utilizing DNA of natural resources and a cell culture kit, the cell culture membrane having DNA ionically-cross-linked with calcium ions or magnesium ions is provided. To produce a porous material utilizing DNA, a production method for a cell culture membrane and a production method for a porous material, fine pores of 1 nm to 100 μm in diameter are prepared in the porous material.