摘要:
Herein disclosed is a semiconductor pressure sensor and a method of manufacture. The sensor includes a plate having a recess in its main surface. A diaphragm has a lower surface therof bonded to a first main surface of the plate and formed so as to have an upper surface having no holes therein. A piezoresistive layer is formed so as to be in contact with the diaphragm and is positioned so as to be at least partially over the recess. The resistance of the piezoresistive layer provides an indication of pressure applied to the diaphragm. The manufacturing method includes forming a piezoresistive layer of a single crystal substrate in a diaphragm without any recrystallization.
摘要:
A gate oxide film is formed on a surface of a semiconductor substrate. A tunnel insulating film having a thickness smaller than that of the gate insulating film is formed in a portion thereof corresponding to a tunnel region. A first silicon film having a low impurity concentration is formed on the gate insulating film. A second silicon film having an impurity concentration higher than that of the first silicon film is formed on the first silicon film so as to be connected thereto. A third silicon film is formed on the second silicon film through an insulating film. The second and third silicon films are formed into floating and control gates, respectively, thereby forming a semiconductor memory device.
摘要:
A heat resisting resin sheet is bonded to a semiconductor chip as a protective cap for protecting a beam structure provided on the semiconductor chip, through a heat resisting adhesive. The heat resisting resin sheet is composed of a polyimide base member and the heat resisting adhesive is composed of silicone adhesive. The heat resisting resin sheet is not deformed during a manufacturing process of the semiconductor chip. In addition, grinding water does not invade into the semiconductor chip during dicing-cut.
摘要:
A gate oxide film is formed on a surface of a semiconductor substrate. A tunnel insulating film having a thickness smaller than that of the gate insulating film is formed in a portion thereof corresponding to a tunnel region. A first silicon film having a low impurity concentration is formed on the gate insulating film. A second silicon film having an impurity concentration higher than that of the first silicon film is formed on the first silicon film so as to be connected thereto. A third silicon film is formed on the second silicon film through an insulating film. The second and third silicon films are formed into floating and control gates, respectively, thereby forming a semiconductor memory device.
摘要:
A gate oxide film is formed on a surface of a semiconductor substrate. A tunnel insulating film having a thickness smaller than that of the gate insulating film is formed in a portion thereof corresponding to a tunnel region. A first silicon film having a low impurity concentration is formed on the gate insulating film. A second silicon film having an impurity concentration higher than that of the first silicon film is formed on the first silicon film so as to be connected thereto. A third silicon film is formed on the second silicon film through an insulating film. The second and third silicon films are formed into floating and control gates, respectively, thereby forming a semiconductor memory device.
摘要:
A gate oxide film is formed on a surface of a semiconductor substrate. A tunnel insulating film having a thickness smaller than that of the gate insulating film is formed in a portion thereof corresponding to a tunnel region. A first silicon film having a low impurity concentration is formed on the gate insulating film. A second silicon film having an impurity concentration higher than that of the first silicon film is formed on the first silicon film so as to be connected thereto. A third silicon film is formed on the second silicon film through an insulating film. The second and third silicon films are formed into floating and control gates, respectively, thereby forming a semiconductor memory device.
摘要:
A tunnel insulating film of a three-layer structure, wherein an oxide film is interposed between nitrided oxide films, is formed on the surface of a semiconductor substrate. A first polysilicon film serving as a low-concentration impurity region is formed on the tunnel insulating film. An oxide film is formed on that region of the first polysilicon film, which corresponds to the tunnel insulating film, the oxide film having such a thickness that the film can serve as a stopper for impurity diffusion and can allow electrons to pass through. A second polysilicon film, having an impurity concentration higher than that of the first polysilicon film, is formed on the oxide film. The first and second polysilicon films constitute a floating gate. A third polysilicon film serving as a control gate is formed above the second polysilicon film, with an insulating layer interposed therebetween.
摘要:
A gate oxide film is formed on a surface of a semiconductor substrate. A tunnel insulating film having a thickness smaller than that of the gate insulating film is formed in a portion thereof corresponding to a tunnel region. A first silicon film having a low impurity concentration is formed on the gate insulating film. A second silicon film having an impurity concentration higher than that of the first silicon film is formed on the first silicon film so as to be connected thereto. A third silicon film is formed on the second silicon film through an insulating film. The second and third silicon films are formed into floating and control gates, respectively, thereby forming a semiconductor memory device.
摘要:
A capacitive semiconductor acceleration sensor capable of efficiently performing a self-diagnostic procedure without having to provide any separate electrodes for self-diagnosis purposes. The acceleration sensor includes a beam portion that is deformable upon application of acceleration thereto in a direction at right angles to the elongate direction thereof to thereby exhibit a spring function. The sensor also includes a movable electrode and fixed electrodes which are integrally formed with the beam portion. The sensor is operable to detect the acceleration while applying between the movable electrode and fixed electrodes a periodically changeable signal to derive an output voltage variable in potential with a differential capacitance change of capacitors between the both electrodes. Here, a detection signal for detection of such acceleration and a self-diagnosis signal are selectively applied while permitting creation of quasi-acceleration at the movable electrode due to application of the self-diagnosis signal, wherein a ratio of a frequency of the self-diagnosis signal to a resonance frequency of the beam portion in its deformation direction is set so that the resultant resonance magnification of such beam portion is more than or equal to one time upon application of the self-diagnosis signal.
摘要:
A physical quantity detection device includes: an insulating layer; a semiconductor layer on the insulating layer; and first and second electrodes in the semiconductor layer. Each electrode has a wall part, one of which includes two diaphragms and a cover part. The diaphragms facing each other provide a hollow cylinder having an opening covered by the cover part. One diaphragm faces the other wall part or one diaphragm in the other wall part. A distance between the one diaphragm and the other wall part or the one diaphragm in the other wall part is changed with pressure difference between reference pressure in the hollow cylinder and pressure of an outside when a physical quantity is applied to the diaphragms. The physical quantity is detected by a capacitance between the first and second electrodes.