摘要:
Disclosed is a semiconductor device which comprises a substrate, an insulating film formed at a predetermined region in the substrate or on the main surface of the substrate, a polycrystalline semiconductor layer formed on at least the insulating film, a single crystal semiconductor layer formed on at least the polycrystalline semiconductor layer, an isolation region formed to extend from the top main surface of the single crystal semiconductor layer to at least the surface of the insulating film, through the polycrystalline semiconductor layer, to electrically isolate a portion formed in the single crystal semiconductor layer surrounded by the isolation region from another portion formed in the single crystal semiconductor layer and not surrounded by the isolation region, at least a semiconductor device formed within the portion surrounded by the isolation region. This semiconductor device has an additional characteristic in that another semiconductor device using another main surface of the substrate as the electrode is provided on the surface of the substrate and the single crystal semiconductor layer, and the plolycrystalline semiconductor layer serves to terminate the electric line of force emitted from the substrate, and therefore, the single crystal semiconductor layer mounted on the polycrystalline semiconductor layer is not affected by the electric line of force. Consequently, a semiconductor device which can operate effectively without being influenced by variations of the electric potential in the substrate can be obtained, and further, an intelligent type power device can be formed in which the power semiconductor device and the semiconductor device controlling the power device are formed in the same substrate but are completely isolated from each other.
摘要:
Disclosed is a semiconductor device which comprises a substrate, an insulating film formed at a predetermined region in the substrate or on the main surface of the substrate, a polycrystalline semiconductor layer formed on at least the insulating film, a single crystal semiconductor layer formed on at least the polycrystalline semiconductor layer, an isolation region formed to extend from the top main surface of the single crystal semiconductor layer to at least the surface of the insulating film, through the polycrystalline semiconductor layer, to electrically isolate a portion formed in the single crystal semiconductor layer surrounded by the isolation region from another portion formed in the single crystal semiconductor layer and not surrounded by the isolation region, at least a semiconductor device formed within the portion surrounded by the isolation region. This semiconductor device has an additional characteristics in that another semiconductor device using another main surface of the substrate as the electrode is provided on the surface of the substrate and the single cyrstal semiconductor layer, and the polycrystalline semiconductor layer serves to terminate the electric line of force emitted from the substrate, and therefore, the single crystal semiconductor layer mounted on the polycrystalline semiconductor layer is not affected by the electric line of force. Consequently, a semiconductor device which can operate effectively without being influenced by variations of the electric potential in the substrate can be obtained, and further, an intelligent type power device can be formed in which the power semiconductor device and the semiconductor device controlling the power device are formed in the same substrate but are completely isolated from each other.
摘要:
An oil deterioration detector comprising a sensitive electrode whose electric potential varies in response to acidity and/or basicity of oil to be measured, and a reference electrode associated with this sensitive electrode. An electrically conductive housing accommodates the sensitive electrode and the reference electrode together with the oil. A potential difference detector detects oil deterioration by measuring a potential difference between the sensitive electrode and the reference electrode. And, an insulating member is interposed between these electrodes and the electrically conductive housing for electrically insulating these electrodes from the electrically conductive housing. The reference electrode is grounded together with the electrically conductive housing. An insulating, hydrophilic porous member would be interposed between the sensitive electrode and the reference electrode.
摘要:
Device including a strain generating portion supported at least at one end on a substrate and formed in a displaceable manner with respect to the substrate in a cavity of the substrate. A semiconductor strain sensing element, which is disposed at the strain generating portion, detects the amount of strain of the strain generating portion. A support is disposed at a connection point between the strain generating portion and the substrate so as to reinforce the connection point.
摘要:
A semiconductor pressure sensor of this invention is intended to provide a semiconductor pressure sensor having an excellent electrical isolation between the supporting means of the semiconductor pressure sensor and the semiconductor substrate, the semiconductor pressure sensor basically comprising a semiconductor substrate having a first semiconductor region in which at least a semiconductor device is formed, a second semiconductor region and an isolated layer buried between the first and second semiconductor regions, a cavity provided in the second semiconductor region, the opening thereof existing on the main surface of the second semiconductor region and a strain detecting portion consisting of the semiconductor device and provided in the first semiconductor region opposite to the cavity. The semiconductor pressure sensor is featured in that at least one of the outer peripheral side surfaces of the first and the second semiconductor regions is formed inside of the outermost peripheral side surface of the isolation layer.
摘要:
A semiconductor pressure sensor of this invention is intended to provide a semiconductor pressure sensor having an excellent electrical isolation between the supporting means of the semiconductor pressure sensor and the semiconductor substrate, the semiconductor pressure sensor basically comprising a semiconductor substrate having a first semiconductor region in which at least a semiconductor device is formed, a second semiconductor region and an isolated layer buried between the first and second semiconductor regions, a cavity provided in the second semiconductor region, the opening thereof existing on the main surface of the second semiconductor region and a strain detecting portion consisting of the semiconductor device and provided in the first semiconductor region opposite to the cavity. The semiconductor pressure sensor is featured in that at least one of the outer peripheral side surfaces of the first and the second semiconductor regions is formed inside of the outermost peripheral side surface of the isolation layer.
摘要:
A semiconductor pressure sensor of this invention is intended to provide a semiconductor pressure sensor having an excellent electrical isolation between the supporting means of the semiconductor pressure sensor and the semiconductor substrate, the semiconductor pressure sensor basically comprising a semiconductor substrate having a first semiconductor region in which; at least a semiconductor device is formed, a second semiconductor region and an isolated layer buried between the first and second semiconductor regions, a cavity provided in the second semiconductor region, the opening thereof existing on the mail surface of the second semiconductor region and a strain detecting portion consisting of the semiconductor device and provided in the first semiconductor region opposite to the cavity. The semiconductor pressure sensor is featured in that at least one of the outer peripheral side surfaces of the first and the second semiconductor regions is formed inside of the outermost peripheral side surface of the isolation layer.
摘要:
A semiconductor sensor for an accelerometer including a beam portion, consisting of a thin beam portion and a thick beam portion and supported by a solid member through the end of the thin beam portion, and a stopper portion provided at a position on an imaginary line along which a center of gravity of the thick beam portion moves. These components are integrally formed in a silicon substrate. Excessive displacement of the beam portion when excessive acceleration is applied is effectively suppressed by the stopper portion, and breakage of the thin beam portion due to excessive acceleration can be avoided.
摘要:
Herein disclosed is a semiconductor pressure sensor and a method of manufacture. The sensor includes a plate having a recess in its main surface. A diaphragm has a lower surface therof bonded to a first main surface of the plate and formed so as to have an upper surface having no holes therein. A piezoresistive layer is formed so as to be in contact with the diaphragm and is positioned so as to be at least partially over the recess. The resistance of the piezoresistive layer provides an indication of pressure applied to the diaphragm. The manufacturing method includes forming a piezoresistive layer of a single crystal substrate in a diaphragm without any recrystallization.
摘要:
To provide both a photodetecting element and a photodetecting device which can prevent generating of a plurality of current paths, and can detect with stability and high sensitivity regardless of a surface state instability of an optical absorption layer. The photodetecting element includes an optically transparent substrate, an optical absorption layer, an electrode, an electrode, an adhesive layer, an insulating film, and a package. The optical absorption layer is formed on the optically transparent substrate, and a part of each the electrodes is embedded in the optical absorption layer. The photodetecting unit is bonded junction down with the adhesive layer on the package. The optical absorption layer absorbs light of a specified wavelength selectively to be converted into an electric signal. The light to be measured is irradiated from a back side surface of the optically transparent substrate.