摘要:
A memory cell includes an ONO film composed of a stacked film of a silicon nitride film SIN which is a charge trapping portion and oxide films BOTOX and TOPOX positioned under and over the silicon nitride film, a memory gate electrode MG over the ONO film, a source region MS, and a drain region MD, and program or erase is performed by hot carrier injection in the memory cell. In the memory cell, a total concentration of N—H bonds and Si—H bonds contained in the silicon nitride film SIN is made to be 5×1020 cm−3 or less.
摘要翻译:存储单元包括由作为电荷捕获部分的氮化硅膜SIN和位于氮化硅膜下面的氧化物膜BOTOX和TOPOX的叠层膜,ONO膜上的存储栅电极MG, 源区MS和漏区MD,并且通过在存储单元中的热载流子注入来执行编程或擦除。 在存储单元中,氮化硅膜SIN中包含的N-H键和Si-H键的总浓度为5×10 20 cm -3以下。
摘要:
Performance of a non-volatile semiconductor storage device which performs electron writing by hot electrons and hole erasure by hot holes is improved. A non-volatile memory cell which performs a writing operation by electrons and an erasure operation by holes has a p-type well region, isolation regions, a source region, and a drain region provided on an Si substrate. A control gate electrode is formed via a gate insulating film between the source region and the drain region. In a left-side side wall of the control gate electrode, a bottom Si oxide film, an electric charge holding film, a top Si oxide film, and a memory gate electrode are formed. The electric charge holding film is formed from an Si nitride film stoichiometrically excessively containing silicon.
摘要:
Performance of a non-volatile semiconductor storage device which performs electron writing by hot electrons and hole erasure by hot holes is improved. A non-volatile memory cell which performs a writing operation by electrons and an erasure operation by holes has a p-type well region, isolation regions, a source region, and a drain region provided on an Si substrate. A control gate electrode is formed via a gate insulating film between the source region and the drain region. In a left-side side wall of the control gate electrode, a bottom Si oxide film, an electric charge holding film, a top Si oxide film, and a memory gate electrode are formed. The electric charge holding film is formed from an Si nitride film stoichiometrically excessively containing silicon.
摘要:
An erase method where a corner portion on which an electric field concentrates locally is provided on the memory gate electrode, and charges in the memory gate electrode are injected into a charge trap film in a gate dielectric with Fowler-Nordheim tunneling operation is used. Since current consumption at the time of erase can be reduced by the Fowler-Nordheim tunneling, a power supply circuit area of a memory module can be reduced. Since write disturb resistance can be improved, a memory array area can be reduced by adopting a simpler memory array configuration. Owing to both the effects, an area of the memory module can be largely reduced, so that manufacturing cost can be reduced. Further, since charge injection centers of write and erase coincide with each other, so that (program and erase) endurance is improved.
摘要:
An erase method where a corner portion on which an electric field concentrates locally is provided on the memory gate electrode, and charges in the memory gate electrode are injected into a charge trap film in a gate dielectric with Fowler-Nordheim tunneling operation is used. Since current consumption at the time of erase can be reduced by the Fowler-Nordheim tunneling, a power supply circuit area of a memory module can be reduced. Since write disturb resistance can be improved, a memory array area can be reduced by adopting a simpler memory array configuration. Owing to both the effects, an area of the memory module can be largely reduced, so that manufacturing cost can be reduced. Further, since charge injection centers of write and erase coincide with each other, so that (program and erase) endurance is improved.
摘要:
A charge storage layer interposed between a memory gate electrode and a semiconductor substrate is formed shorter than a gate length of the memory gate electrode or a length of insulating films so as to make the overlapping amount of the charge storage layer and a source region to be less than 40 nm. Therefore, in the write state, since the movement in the transverse direction of the electrons and the holes locally existing in the charge storage layer decreases, the variation of the threshold voltage when holding a high temperature can be reduced. In addition, the effective channel length is made to be 30 nm or less so as to reduce an apparent amount of holes so that coupling of the electrons with the holes in the charge storage layer decreases; therefore, the variation of the threshold voltage when holding at room temperature can be reduced.
摘要:
A charge storage layer interposed between a memory gate electrode and a semiconductor substrate is formed shorter than a gate length of the memory gate electrode or a length of insulating films so as to make the overlapping amount of the charge storage layer and a source region to be less than 40 nm. Therefore, in the write state, since the movement in the transverse direction of the electrons and the holes locally existing in the charge storage layer decreases, the variation of the threshold voltage when holding a high temperature can be reduced. In addition, the effective channel length is made to be 30 nm or less so as to reduce an apparent amount of holes so that coupling of the electrons with the holes in the charge storage layer decreases; therefore, the variation of the threshold voltage when holding at room temperature can be reduced.
摘要:
A charge storage layer interposed between a memory gate electrode and a semiconductor substrate is formed shorter than a gate length of the memory gate electrode or a length of insulating films so as to make the overlapping amount of the charge storage layer and a source region to be less than 40 nm. Therefore, in the write state, since the movement in the transverse direction of the electrons and the holes locally existing in the charge storage layer decreases, the variation of the threshold voltage when holding a high temperature can be reduced. In addition, the effective channel length is made to be 30 nm or less so as to reduce an apparent amount of holes so that coupling of the electrons with the holes in the charge storage layer decreases; therefore, the variation of the threshold voltage when holding at room temperature can be reduced.
摘要:
In a situation where a memory cell includes an ONO film, which comprises a silicon nitride film for charge storage and oxide films positioned above and below the silicon nitride film; a memory gate above the ONO film; a select gate, which is adjacent to a lateral surface of the memory gate via the ONO film; a gate insulator positioned below the select gate; a source region; and a drain region, an erase operation is performed by injecting holes generated by BTBT into the silicon nitride film while applying a positive potential to the source region, applying a negative potential to the memory gate, applying a positive potential to the select gate, and flowing a current from the drain region to the source region, thus improving the characteristics of a nonvolatile semiconductor memory device.
摘要:
A method of manufacturing a non-volatile semiconductor memory device is provided which overcomes a problem of penetration of implanted ions due to the difference of an optimal gate height in simultaneous formation of a self-align split gate type memory cell utilizing a side wall structure and a scaled MOS transistor. A select gate electrode to form a side wall in a memory area is formed to be higher than that of the gate electrode in a logic area so that the height of the side wall gate electrode of the self-align split gate memory cell is greater than that of the gate electrode in the logic area. Height reduction for the gate electrode is performed in the logic area before gate electrode formation.