摘要:
According to one embodiment, a semiconductor memory device with memory cells each composed of a vertical transistor, comprises a silicon layer formed into a columnar shape on a silicon substrate, a gate insulating film part in which a tunnel insulating film, a charge storage layer, and a block insulating film are formed to surround the sidewall surface of the silicon layer, and a stacked structure part formed to surround the sidewall surface of the gate insulating film part and in which a plurality of interlayer insulating films and a plurality of control gate electrode layers are stacked alternately. The silicon layer, gate insulating film part, and control gate electrode layer constitute the vertical transistor. The charge storage layer has a region lower in trap level than a region facing the control gate electrode layer between the vertical transistors.
摘要:
According to one embodiment, a semiconductor memory device with memory cells each composed of a vertical transistor, comprises a silicon layer formed into a columnar shape on a silicon substrate, a gate insulating film part in which a tunnel insulating film, a charge storage layer, and a block insulating film are formed to surround the sidewall surface of the silicon layer, and a stacked structure part formed to surround the sidewall surface of the gate insulating film part and in which a plurality of interlayer insulating films and a plurality of control gate electrode layers are stacked alternately. The silicon layer, gate insulating film part, and control gate electrode layer constitute the vertical transistor. The charge storage layer has a region lower in trap level than a region facing the control gate electrode layer between the vertical transistors.
摘要:
According to one embodiment, a nonvolatile memory device includes a plurality of nonvolatile memory elements each of that includes a resistance change film. The resistance change film is capable of recording information by transitioning between a plurality of states having different resistances in response to at least one of a voltage applied to the resistance change film or a current passed through the resistance change film, and the resistance change film includes an oxide containing at least one element selected from the group consisting of Hf, Zr, Ni, Ta, W, Co, Al, Fe, Mn, Cr, and Nb. An impurity element contained in the resistance change film is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, La, V, Ta, B, Ga, In, Tl, C, Si, Ge, Sn, Pb, N, P, As, Sb, Bi, S, Se, and Te, and the impurity element has an absolute value of standard Gibbs energy of oxide formation larger than an absolute value of standard Gibbs energy of oxide formation of the element contained in the oxide.
摘要:
According to one embodiment, there is provided a method of manufacturing a nonvolatile memory device. In this method, a first voltage may be applied to a variable resistive element having a resistance value which is electrically rewritable in a high resistance and in a low resistance. In this method, a second voltage may be applied to the variable resistive element in a case where the resistance value of the variable resistive element to which the first voltage has been applied is greater than a resistance value of the low resistance and is not greater than a resistance value of the high resistance. Further, in this method, the applying of the second voltage to the variable resistive element may be repeated until the resistance value of the variable resistive element to which the second voltage has been applied falls within a range of the resistance value of the low resistance.
摘要:
A semiconductor device includes a tunnel insulating film formed on a semiconductor substrate, a charge storage insulating film formed on the tunnel insulating film and including at least two separated low oxygen concentration portions and a high oxygen concentration portion positioned between the adjacent low oxygen concentration portions and having a higher oxygen concentration than the low oxygen concentration portions, a charge block insulating film formed on the charge storage insulating film, and control gate electrodes formed on the charge block insulating film and above the low oxygen concentration portions.
摘要:
A semiconductor device includes a semiconductor substrate, a first insulating film formed on the semiconductor substrate, a charge storage layer formed on the first insulating film, a second insulating film formed on the charge storage layer, and a control electrode formed on the second insulating film, the second insulating film including a lower silicon nitride film, a lower silicon oxide film formed on the lower silicon nitride film, an intermediate insulating film formed on the lower silicon oxide film and containing a metal element, the intermediate insulating film having a relative dielectric constant of greater than 7, an upper silicon oxide film formed on the intermediate insulating film, and an upper silicon nitride film formed on the upper silicon oxide film.
摘要:
According to one embodiment, a nonvolatile memory device includes a plurality of nonvolatile memory elements each of that includes a resistance change film. The resistance change film is capable of recording information by transitioning between a plurality of states having different resistances in response to at least one of a voltage applied to the resistance change film or a current passed through the resistance change film, and the resistance change film includes an oxide containing at least one element selected from the group consisting of Hf, Zr, Ni, Ta, W, Co, Al, Fe, Mn, Cr, and Nb. An impurity element contained in the resistance change film is at least one element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, La, V, Ta, B, Ga, In, Tl, C, Si, Ge, Sn, Pb, N, P, As, Sb, Bi, S, Se, and Te, and the impurity element has an absolute value of standard Gibbs energy of oxide formation larger than an absolute value of standard Gibbs energy of oxide formation of the element contained in the oxide.
摘要:
A semiconductor device includes a semiconductor substrate, a plurality of nonvolatile memory cells provided on the semiconductor substrate, each of the plurality of nonvolatile memory cells comprising a first insulating film provided on the semiconductor substrate, a charge storage layer provided on the first insulating film, a control gate electrode provided above the charge storage layer, a second insulating film provided between the control gate electrode and the charge storage layer, the second insulating film between adjacent charge storage layers including a first region having permittivity lower than that of the second insulating film on a top surface of the charge storage layer in a cross-section view of a channel width direction of the nonvolatile memory cell, and the first region having composition differing from that of the second insulating film on the top surface of the charge storage layer.
摘要:
A semiconductor device includes a semiconductor substrate, and nonvolatile memory cells, each of the cells including a channel region having a channel length and a channel width, a tunnel insulating film, a floating gate electrode, a control gate electrode, an inter-electrode insulating film between the floating and control gate electrodes, and an electrode side-wall insulating film on side-wall surfaces of the floating and control gate electrodes, the electrode side-wall insulating film including first and second insulating films having first and second dielectric constants, the first dielectric constant being higher than the second dielectric constant, the second dielectric constant being higher than a dielectric constant of a silicon nitride film, the first insulating film being in a central region of a facing region between the floating and control gate electrodes, the second insulating region being in the both end regions of the facing region and protruding from the both end portions.
摘要:
A method of manufacturing a semiconductor device comprising a first insulating film formed on a semiconductor substrate, a charge storage layer formed on the first insulating film, a second insulating film formed on the charge storage layer, and a control electrode formed on the second insulating film, forming the second insulating film comprises forming a lower insulating film containing oxygen and a metal element, thermally treating the lower insulating film in an atmosphere containing oxidizing gas, and forming an upper insulating film on the thermally treated lower insulating film using film forming gas containing at least one of hydrogen and chlorine.