Abstract:
An integrated circuit includes an extended drain MOS transistor with parallel alternating active gap drift regions and field gap drift regions. The extended drain MOS transistor includes a gate having field plates over the field gap drift regions. The extended drain MOS transistor may be formed in a symmetric nested configuration. A process for forming an integrated circuit containing an extended drain MOS transistor provides parallel alternating active gap drift regions and field gap drift regions with a gate having field plates over the field gap drift regions.
Abstract:
A semiconductor device contains an LDNMOS transistor with a lateral n-type drain drift region and a p-type RESURF region over the drain drift region. The RESURF region extends to a top surface of a substrate of the semiconductor device. The semiconductor device includes a shunt which is electrically coupled between the RESURF region and a low voltage node of the LDNMOS transistor. The shunt may be a p-type implanted layer in the substrate between the RESURF layer and a body of the LDNMOS transistor, and may be implanted concurrently with the RESURF layer. The shunt may be through an opening in the drain drift region from the RESURF layer to the substrate under the drain drift region. The shunt may be include metal interconnect elements including contacts and metal interconnect lines.
Abstract:
A semiconductor device contains an LDNMOS transistor with a lateral n-type drain drift region and a p-type RESURF region over the drain drift region. The RESURF region extends to a top surface of a substrate of the semiconductor device. The semiconductor device includes a shunt which is electrically coupled between the RESURF region and a low voltage node of the LDNMOS transistor. The shunt may be a p-type implanted layer in the substrate between the RESURF layer and a body of the LDNMOS transistor, and may be implanted concurrently with the RESURF layer. The shunt may be through an opening in the drain drift region from the RESURF layer to the substrate under the drain drift region. The shunt may be include metal interconnect elements including contacts and metal interconnect lines.
Abstract:
An integrated circuit includes an extended drain MOS transistor with parallel alternating active gap drift regions and field gap drift regions. The extended drain MOS transistor includes a gate having field plates over the field gap drift regions. The extended drain MOS transistor may be formed in a symmetric nested configuration. A process for forming an integrated circuit containing an extended drain MOS transistor provides parallel alternating active gap drift regions and field gap drift regions with a gate having field plates over the field gap drift regions.
Abstract:
A semiconductor device contains an LDNMOS transistor with a lateral n-type drain drift region and a p-type RESURF region over the drain drift region. The RESURF region extends to a top surface of a substrate of the semiconductor device. The semiconductor device includes a shunt which is electrically coupled between the RESURF region and a low voltage node of the LDNMOS transistor. The shunt may be a p-type implanted layer in the substrate between the RESURF layer and a body of the LDNMOS transistor, and may be implanted concurrently with the RESURF layer. The shunt may be through an opening in the drain drift region from the RESURF layer to the substrate under the drain drift region. The shunt may be include metal interconnect elements including contacts and metal interconnect lines.
Abstract:
A semiconductor device includes at least a first transistor including at least a second level metal layer (second metal layer) above a first level metal layer coupled by a source contact to a source region doped with a first dopant type. The second level metal layer is coupled by a drain contact to a drain region doped with the first dopant type. A gate stack is between the source region and drain region having the second level metal layer coupled by a contact thereto. The second level metal layer is coupled by a contact to a first isolation region doped with the second dopant type. The source region and drain region are within the first isolation region. A second isolation region doped with the first dopant type encloses the first isolation region, and is not coupled to the second level metal layer so that it electrically floats.
Abstract:
An integrated circuit includes an extended drain MOS transistor with parallel alternating active gap drift regions and field gap drift regions. The extended drain MOS transistor includes a gate having field plates over the field gap drift regions. The extended drain MOS transistor may be formed in a symmetric nested configuration. A process for forming an integrated circuit containing an extended drain MOS transistor provides parallel alternating active gap drift regions and field gap drift regions with a gate having field plates over the field gap drift regions.
Abstract:
A semiconductor device contains an LDNMOS transistor with a lateral n-type drain drift region and a p-type RESURF region over the drain drift region. The RESURF region extends to a top surface of a substrate of the semiconductor device. The semiconductor device includes a shunt which is electrically coupled between the RESURF region and a low voltage node of the LDNMOS transistor. The shunt may be a p-type implanted layer in the substrate between the RESURF layer and a body of the LDNMOS transistor, and may be implanted concurrently with the RESURF layer. The shunt may be through an opening in the drain drift region from the RESURF layer to the substrate under the drain drift region. The shunt may be include metal interconnect elements including contacts and metal interconnect lines.
Abstract:
An integrated circuit (IC) includes a substrate having a p-type semiconductor surface. A first nwell includes an area surrounding a first plurality of semiconductor devices formed in the semiconductor surface having a first n-buried layer (NBL) thereunder. A vertical diode formed in the semiconductor surface surrounds the first nwell including a pwell on top of a floating NBL ring. A second nwell formed in the semiconductor surface includes an area surrounding the floating NBL ring and surrounds a second plurality of semiconductor devices having a second NBL thereunder.