摘要:
The present invention relates to methods and (bio)sensor systems. Herein, magnetic fields are applied in order to transport magnetic particles laterally over a sensor surface with analyte specific probes. The methods of the invention allow the specific binding of magnetic particles to the sensor surface, while aspecific and unbound particles are removed.
摘要:
The present invention discloses microfluidic devices with a valve-like structure (3), through which magnetic particles can be transported with minimal transport of fluids. This allows sequential processing of the magnetic particles.
摘要:
A detection system (100) and a sensor chip (1) for detecting target molecules, and thus corresponding analytes in a sample is described. Typically the detection system (100) includes a sensor chip (1). The sensor chip (1) comprises on its detection surface (33) a dissolvable reagent layer (5). When the dissolvable reagent layer (5) is in contact with sample fluid, free reagent is generated, assisting in the interaction between a label and target molecules, thus allowing for label based detection. The sample thereby is exposed to mobile reagents in a burst. The reagent layer may contain an enzyme allowing enzymatic assays.
摘要:
A detection system (100) and a sensor chip (1) for detecting target molecules, and thus corresponding analytes in a sample is described. Typically the detection system (100) includes a sensor chip (1). The sensor chip (1) comprises on its detection surface (33) a dissolvable reagent layer (5). When the dissolvable reagent layer (5) is in contact with sample fluid, free reagent is generated, assisting in the interaction between a label and target molecules, thus allowing for label based detection. The sample thereby is exposed to mobile reagents in a burst. The reagent layer may contain an enzyme allowing enzymatic assays.
摘要:
The present invention discloses microfluidic devices with a valve-like structure (3), through which magnetic particles can be transported with minimal transport of fluids. This allows sequential processing of the magnetic particles.
摘要:
A system and method wherein components of a reagent such as labeled antibodies are separated from a biologically active sensor surface by depositing the reagent on a carrier surface distinct from a sensor surface in a detection region. The present device provides a short, well-defined and controlled, pre-incubation time between the particles of interest in the sample fluid and the reagent, thereby increasing the reproducibility by providing all components in one detection region such as a detection chamber.
摘要:
A magnetic system for biosensors or a biosystem, wherein magnetic particles that interact with molecules are brought into a magnetic field, in order to be influenced via magnetic attraction or repulsion forces. The external magnetic field is varied by mechanically moving the magnetic poles of at least one magnetic relative to the sensor or at least its surface to allow the magnetic force to be switched between effective attraction towards the sensor surface and effective repulsion away from the sensor surface.
摘要:
A system and method is described wherein components of the reagent (4), e.g. labelled antibodies, are separated from the biologically active sensor surface (5) by depositing the reagent (4) on a carrier surface (3) distinct from the sensor surface (5) in the detection region (2), e.g. detection chamber. In this way, a high assay reproducibility is obtained. By allowing a short, well-defined and controlled, pre-incubation time between the particles of interest, e.g. drugs, in the sample fluid (20) and the reagent (4), the reproducibility will be increased, whereas the speed of the assay is guaranteed by having all components in one detection region (2), e.g. detection chamber.
摘要:
The invention relates to a microelectronic sensor device for the detection of target components that comprise label particles, for example magnetic particles (1). The sensor device comprises a carrier (11) with a binding surface (12) at which target components can collect and optionally bind to specific capture elements. An input light beam (L1) is transmitted into the carrier and totally internally reflected at the binding surface (12). The amount of light in the output light beam (L2) and optionally also of fluorescence light emitted by target components at the binding surface is then detected by a light detector (31). Evanescent light generated during the total internal reflection is affected (absorbed, scattered) by target components and/or label particles (1) at the binding surface (12) and will therefore be missing in the output light beam (L2). This can be used to determine the amount of target components at the binding surface (12) from the amount of light in the output light beam (L2, L2a, L2b). A magnetic field generator (41) is optionally used to generate a magnetic field (B) at the binding surface (12) by which magnetic label particles (1) can be manipulated, for example 15 attracted or repelled.
摘要:
The application relates to a method for detecting a target in a sample suspected of containing the target. The method comprises contacting the sample and a first binding molecule attached to a magnetic particle with a second binding molecule attached to a solid support. The first binding molecule is capable of binding to the second binding molecule, and the target is capable of interfering with this binding. Magnetic force is applied to bring the magnetic particle into close proximity with the solid support. The number of magnetic particles bound to the solid support is detected.