摘要:
The disclosed invention is a method for fabricating a multi-layer semiconductor device using selective planarization. In accordance with one embodiment of the invention, conductive members are formed on a substrate and a first insulating layer is deposited onto the substrate and the conductive members. A second insulating layer, which has a lower flow temperature than the flow temperature of the first layer, is deposited onto the first layer. A photoresist mask is patterned and developed to form a window which exposes an area between the conductive members. The device is preferentially etched such that only the exposed areas of the second insulating layer are removed, leaving the first insulating layer intact. An anisotropic etch is used to remove portions of the first insulating layer, leaving spacers along the edges of the conductive members. The photoresist mask is removed and a heating step is performed which flows the remaining portions of the second insulating layer, but not the first layer. Since the second insulating material remains in only selective areas, the process is termed selective planarization. The method provides the benefit that areas which are to be etched to form contact hole or vias are not planarized, unlike existing blanket planarization methods, and a self-aligned contact is formed between the conductive members to the substrate.
摘要:
A self-aligned contact is formed in a multi-layer semiconductor device. In one form, conductive members are formed overlying a substrate material and a first insulating layer is deposited overlying the substrate material and the conductive members. A film of material is deposited on the first insulating layer and the film of material is patterned to form a sacrificial plug in an area where a contact is to be made. A second insulating layer is deposited on the device, and the device is made substantially planar. The second insulating layer is etched back to expose the sacrificial plug. The sacrificial plug is removed by selectively etching the device such that the first and second insulating layers are left substantially unaltered. An anisotropic etch of the device is performed to expose an area of the substrate material on which a contact is to be made, and to simultaneously form sidewall spacers along edges of the conductive members. A conductive layer is deposited onto the device and patterned, thereby forming a self-aligned contact.
摘要:
A method includes forming a first transistor having a first gate dielectric thickness and a first source/drain extension depth, a second transistor having a second gate dielectric thickness and the first source/drain extension depth, and a third transistor having the second gate dielectric thickness and a second source/drain extension depth. The second source/drain extension depth is greater than the first source/drain extension depth. The second gate dielectric thickness is greater than the first gate dielectric thickness. The first transistor is used in a logic circuit. The third transistor is used in an I/O circuit. The second transistor is made without extra processing steps and is better than either the first or third transistor for coupling a power supply terminal to the logic circuit in a power-up mode and decoupling the power supply terminal from the logic circuit in a power-down mode.
摘要:
A semiconductor device includes a memory array of static-random-access memory cells. The SRAM cells are formed using a process flow more closely associated with logic-type devices. The SRAM cells are formed using one semiconductor layer compared to at least three typically seen with SRAM cells. The SRAM cells include many features that allow its dimensions to be scaled to very small dimensions (less than 0.25 microns and possible down to 0.1 microns or even smaller). A unique process integration scheme allows formation of local interconnects (522 and 524), wherein each local interconnect (522, 524) cross couples the inverters of the SRAM and is formed within a single opening (70). Also, interconnect portions (104) of word lines are laterally offset from silicon portions (36) of the same word line, so that the interconnect portions do not interfere with bit line connections.
摘要:
A semiconductor device and its method of fabrication are disclosed. The method includes forming a first well region in a semiconductor substrate. The semiconductor substrate includes a first doped region below the first well region. The first well region and the first doped region are doped with a first type dopant and the first well region is electrically connected to the first doped region. An isolation region is formed between the first well region and the first doped region. The isolation region is electrically connected to a second well region. The isolation region and the second well region are doped with a second dopant type The second dopant type is opposite the first dopant type. In one embodiment, the first type dopant includes a p-type dopant, and the second type dopant includes an n-type dopant. The method may further include, forming a second doped region within the first well region and below the isolation region. A third doped region with the first type dopant may be formed over the isolation region. The method may further include forming a gate electrode over the semiconductor substrate, forming source/drain regions adjacent the gate electrode and forming a protective charge recombination region below the gate electrode and the source/drain regions.
摘要:
A semiconductor device includes a memory array of static-random-access memory cells. The SRAM cells are formed using a process flow more closely associated with logic-type devices. The SRAM cells are formed using one semiconductor layer compared to at least three typically seen with SRAM cells. The SRAM cells include many features that allow its dimensions to be scaled to very small dimensions (less than 0.25 microns and possible down to 0.1 microns or even smaller). A unique process integration scheme allows formation of local interconnects (522 and 524), wherein each local interconnect (522, 524) cross couples the inverters of the SRAM and is formed within a single opening (70). Also, interconnect portions (104) of word lines are laterally offset from silicon portions (36) of the same word line, so that the interconnect portions do not interfere with bit line connections.
摘要:
Electrical shorts and leakage paths are virtually eliminated by recessing conductive nodules (52) away from a conductor (72) or not forming the conductive nodules at all. In one embodiment, the refractory metal containing material (52) is recessed from the edge of the opening (32). When forming a nitride layer (54) within the opening (32), conductive nodules (52) are formed from a portion of the refractory metal containing material (20) such that the conductive modules (52) lie within the recession (42). In another embodiment, an oxide layer (82, 102) is formed adjacent to the refractory metal containing material (20) before forming a nitride layer (84, 112).
摘要:
Electrical shorts and leakage paths are virtually eliminated by recessing conductive nodules (52) away from a conductor (72) or not forming the conductive nodules at all. In one embodiment, the refractory metal containing material (52) is recessed from the edge of the opening (32). When forming a nitride layer (54) within the opening (32), conductive nodules (52) are formed from a portion of the refractory metal containing material (20) such that the conductive nodules (52) lie within the recession (42). In another embodiment, an oxide layer (82, 102) is formed adjacent to the refractory metal containing material (20) before forming a nitride layer (84, 112).
摘要:
A contact between a heavily-doped region in the substrate and metal is made via a hole in a thick oxide layer and a polysilicon layer. The polysilicon layer is first etched to form a hole for establishing a mask for the eventual contact hole. Prior to forming the contact hole, a sidewall spacer of polysilicon is formed in the hole in the polysilicon layer. A thin oxide layer over the polysilicon layer is used for convenient end point detection during the formation of the polysilicon sidewall spacers. The sidewall spacer reduces the bore dimension of the hole in the polysilicon used for the mask for forming the contact hole. A hole is then etched in the thick oxide which is sloped and which has a bore dimension determined by the hole in the polysilicon which is reduced due to the sidewall spacer. The heavily-doped region, the contact hole, and the remaining polysilicon are coated with a barrier. The contact hole is then filled with a conductive material which also coats the barrier. The resulting conductive material, barrier, and polysilicon, are conveniently selectively etched in a single process step. The contact adheres well because polysilicon is in contact with the thick oxide in the locations where there is going to applied any physical stress, such as a bonding pad.
摘要:
Self-aligned and/or isolated contacts are formed in a semiconductor device, while simultaneously providing device planarization. In one form, an imagable material is deposited directly on a substrate material. The imagable material is patterned to form a sacrifical plug on a portion of the substrate material. A substantially planar insulating layer is then deposited overlying the substrate material. The plug formed of the imagable material is then removed, thereby exposing a portion of the substrate material and defining a contact opening. A conductive layer is deposited and patterned to complete formation of a contact.