摘要:
Mitigating errors caused by the dispersion of optical or electrical signals. Errors caused by dispersion in high frequency system are mitigated by passing a received signal through an adjustable linear filter that counteracts a channel response of a channel on which the received signal has traveled to produce an electrical signal. The adjustable linear filter has a number of coefficients. A figure of merit is calculated for the electrical signal, where the figure of merit includes the second and fourth moments of the electrical signal. The coefficients of the linear filter are adjusted based on the value of the figure of merit so as to minimize the figure of merit.
摘要:
A vertical cavity surface emitting laser (VCSEL) using photonic crystals. Photonic crystals are formed such that the active region of the VCSEL is bounded by the photonic crystals. The photonic crystals have a periodic cavity structure that reflects light of certain wavelengths through the active region of the VCSEL such that laser light at the wavelengths is generated. Additional photonic crystals can be formed to increase the bandwidth of the VCSEL. The photonic crystals can also be combined with distributed bragg reflector layers to form the mirrors of a VCSEL.
摘要:
Signal reflection mitigation in fiber-optic networks. Signal reflections are mitigated using near-end echo cancellation, threshold adjustment and/or error correction code. Signal reflections in a receive signal that are caused by near-end connectors may be mitigated using an echo cancellation signal. Signal reflections caused by other discontinuities on a fiber-optic network may be mitigated by using error correction code. Also, an average value of a reflected signal maybe detected and used to set an adjusted threshold value to interpret logical values of an electronic or optical signal.
摘要:
A vertical cavity surface emitting laser (VCSEL) using photonic crystals with a central defect. At least one of the mirror layers of a VCSEL includes a photonic crystal with a central defect. The central defect, which is surrounded by a periodic structure of holes or cavities, permits laser light to propagate and exit the VCSEL. Semi-insulating regions are formed in the active region such that when cavities are drilled in the photonic crystal and penetrate the active region, the cavities pass through the semi-insulating regions. This reduces the surface recombination that would otherwise occur in the active region and prevents the threshold current from increasing. The photonic crystal with a central defect has a reflectivity that is wavelength dependent. The VCSEL thus emits a single mode.
摘要:
Vertical cavity surface emitting lasers are disclosed, one example of which includes a substrate upon which a lower mirror layer is formed. An active region and upper mirror layer are disposed, in that order, on the lower mirror layer. In particular, the upper mirror layer includes a plurality of DBR layers formed on the active region. The upper mirror layer additionally includes a photonic crystal formed on the plurality of DBR layers and having a periodic structure that contributes to the definition of a central defect. As a consequence of this structure, the photonic crystal has a reflectivity that is wavelength dependent, and the central defect enables the VCSEL to propagate a single mode.
摘要:
This disclosure concerns distributed feedback (“DFB”) lasers. In one example, a DFB laser includes a body that has first and second end facets. The DFB laser is implemented in a stack configuration that includes an active region interposed between a first top layer and a substrate. A second top layer is disposed on the first top layer and has an index of refraction different from that of the first top layer. Additionally, a grating is defined in one of the top layers and extends from the first end facet to the second end facet. The grating includes a tooth/gap structure whose configuration varies between the first end facet and the second end facet. Finally, an antireflective (AR) coating is disposed on the first end facet and on the second end facet.
摘要:
Signal reflection mitigation in fiber-optic networks. Signal reflections are mitigated using near-end echo cancellation, threshold adjustment and/or error correction code. Signal reflections in a receive signal that are caused by near-end connectors may be mitigated using an echo cancellation signal. Signal reflections caused by other discontinuities on a fiber-optic network may be mitigated by using error correction code. Also, an average value of a reflected signal maybe detected and used to set an adjusted threshold value to interpret logical values of an electronic or optical signal.
摘要:
Mitigating errors caused by the dispersion of optical or electrical signals. Errors caused by dispersion in high frequency system are mitigated by passing a received signal through an adjustable linear filter that counteracts a channel response of a channel on which the received signal has traveled to produce an electrical signal. The adjustable linear filter has a number of coefficients. A figure of merit is calculated for the electrical signal, where the figure of merit includes the second and fourth moments of the electrical signal. The coefficients of the linear filter are adjusted based on the value of the figure of merit so as to minimize the figure of merit.
摘要:
Vertical cavity surface emitting lasers are disclosed, one example of which includes a substrate upon which a lower mirror layer is formed. An active region and upper mirror layer are disposed, in that order, on the lower mirror layer. In particular, the upper mirror layer includes a plurality of DBR layers formed on the active region. The upper mirror layer additionally includes a photonic crystal formed on the plurality of DBR layers and having a periodic structure that contributes to the definition of a central defect. As a consequence of this structure, the photonic crystal has a reflectivity that is wavelength dependent, and the central defect enables the VCSEL to propagate a single mode.
摘要:
Vertical cavity surface emitting lasers are disclosed, one example of which includes a substrate upon which a lower mirror layer is formed. An active region and upper mirror layer are disposed, in that order, on the lower mirror layer. In particular, the upper mirror layer includes a plurality of DBR layers formed on the active region. The upper mirror layer additionally includes a photonic crystal formed on the plurality of DBR layers and having a periodic structure that contributes to the definition of a central defect. As a consequence of this structure, the photonic crystal has a reflectivity that is wavelength dependent, and the central defect enables the VCSEL to propagate a single mode.