摘要:
Formation of a silicide layer on the source/drain regions of a field effect transistor with a channel under tensile strain is disclosed. The strain is originated by the silicon/carbon source/drain regions which are grown by CVD deposition. In order to form the silicide layer, a silicon cap layer is deposited in situ by CVD. The silicon cap layer is then employed to form a silicide layer made of a silicon/cobalt compound. This method allows the formation of a silicide cobalt layer in silicon/carbon source/drain regions, which was until the present time not possible.
摘要:
A method of forming a field effect transistor comprises providing a semiconductor substrate, a gate electrode being formed over the semiconductor substrate. At least one cavity is formed adjacent the gate electrode. A strain-creating element is formed in the at least one cavity. The strain-creating element comprises a compound material comprising a first chemical element and a second chemical element. A first concentration ratio between a concentration of the first chemical element in a first portion of the strain-creating element and a concentration of the second chemical element in the first portion of the strain-creating element is different from a second concentration ratio between a concentration of the first chemical element in a second portion of the strain-creating element and a concentration of the second chemical element in the second strain-creating element.
摘要:
A method of forming a field effect transistor comprises providing a semiconductor substrate, a gate electrode being formed over the semiconductor substrate. At least one cavity is formed adjacent the gate electrode. A strain-creating element is formed in the at least one cavity. The strain-creating element comprises a compound material comprising a first chemical element and a second chemical element. A first concentration ratio between a concentration of the first chemical element in a first portion of the strain-creating element and a concentration of the second chemical element in the first portion of the strain-creating element is different from a second concentration ratio between a concentration of the first chemical element in a second portion of the strain-creating element and a concentration of the second chemical element in the second strain-creating element.
摘要:
By providing a CMP stop layer in a metal gate stack, the initial height thereof may be efficiently reduced after the definition of the deep drain and source areas, thereby providing enhanced process conditions for forming highly stressed dielectric materials. Consequently, the dielectric material may be positioned more closely to the channel region substantially without deteriorating gate conductivity.
摘要:
By providing a CMP stop layer in a metal gate stack, the initial height thereof may be efficiently reduced after the definition of the deep drain and source areas, thereby providing enhanced process conditions for forming highly stressed dielectric materials. Consequently, the dielectric material may be positioned more closely to the channel region substantially without deteriorating gate conductivity.
摘要:
By forming a substantially continuous and uniform semiconductor alloy in one active region while patterning the semiconductor alloy in a second active region so as to provide a base semiconductor material in a central portion thereof, different types of strain may be induced, while, after providing a corresponding cover layer of the base semiconductor material, well-established process techniques for forming the gate dielectric may be used. In some illustrative embodiments, a substantially self-aligned process is provided in which the gate electrode may be formed on the basis of layer, which has also been used for defining the central portion of the base semiconductor material of one of the active regions. Hence, by using a single semiconductor alloy, the performance of transistors of different conductivity types may be individually enhanced.
摘要:
A method of forming a semiconductor structure comprises providing a semiconductor substrate comprising a first transistor element and a second transistor element. Each of the first transistor element and the second transistor element comprises a gate electrode. A stressed material layer is deposited over the first transistor element and the second transistor element. The stressed material layer is processed to form from the stressed material layer sidewall spacers adjacent the gate electrode of the second transistor element and a hard mask covering the first transistor element. A pair of cavities is formed adjacent the gate electrode of the second transistor element. A pair of stress-creating elements is formed in the cavities and the hard mask is at least partially removed.
摘要:
Gate failures in sophisticated high-k metal gate electrode structures formed in an early manufacturing stage may be reduced by forming a protective liner material after the incorporation of a strain-inducing semiconductor alloy and prior to performing any critical wet chemical processes. In this manner, attacks in the sensitive gate materials after the incorporation of the strain-inducing semiconductor material may be avoided, without influencing the further processing of the device. In this manner, very sophisticated circuit designs may be applied in sophisticated gate first approaches.
摘要:
By forming a substantially continuous and uniform semiconductor alloy in one active region while patterning the semiconductor alloy in a second active region so as to provide a base semiconductor material in a central portion thereof, different types of strain may be induced, while, after providing a corresponding cover layer of the base semiconductor material, well-established process techniques for forming the gate dielectric may be used. In some illustrative embodiments, a substantially self-aligned process is provided in which the gate electrode may be formed on the basis of layer, which has also been used for defining the central portion of the base semiconductor material of one of the active regions. Hence, by using a single semiconductor alloy, the performance of transistors of different conductivity types may be individually enhanced.
摘要:
By forming a substantially continuous and uniform semiconductor alloy in one active region while patterning the semiconductor alloy in a second active region so as to provide a base semiconductor material in a central portion thereof, different types of strain may be induced, while, after providing a corresponding cover layer of the base semiconductor material, well-established process techniques for forming the gate dielectric may be used. In some illustrative embodiments, a substantially self-aligned process is provided in which the gate electrode may be formed on the basis of layer, which has also been used for defining the central portion of the base semiconductor material of one of the active regions. Hence, by using a single semiconductor alloy, the performance of transistors of different conductivity types may be individually enhanced.