Abstract:
A multi-step system and method for curing a dielectric film in which the system includes a drying system configured to reduce the amount of contaminants, such as moisture, in the dielectric film. The system further includes a curing system coupled to the drying system, and configured to treat the dielectric film with ultraviolet (UV) radiation and infrared (IR) radiation in order to cure the dielectric film.
Abstract:
A multi-step system and method for curing a dielectric film in which the system includes a drying system configured to reduce the amount of contaminants, such as moisture, in the dielectric film. The system further includes a curing system coupled to the drying system, and configured to treat the dielectric film with ultraviolet (UV) radiation and infrared (IR) radiation in order to cure the dielectric film.
Abstract:
A multi-step system and method for curing a dielectric film in which the system includes a drying system configured to reduce the amount of contaminants, such as moisture, in the dielectric film. The system further includes a curing system coupled to the drying system, and configured to treat the dielectric film with ultraviolet (UV) radiation and infrared (IR) radiation in order to cure the dielectric film.
Abstract:
A processing method and apparatus uses at least one electric field applicator (34) biased to produce a spatial-temporal electric field to affect a processing medium (26), suspended nano-objects (28) or the substrate (30) in processing, interacting with the dipole properties of the medium (26) or particles to construct structure on the substrate (30). The apparatus may include a magnetic field, an acoustic field, an optical force, or other generation device. The processing may affect selective localized layers on the substrate (30) or may control orientation of particles in the layers, control movement of dielectrophoretic particles or media, or cause suspended particles of different properties to follow different paths in the processing medium (26). Depositing or modifying a layer on the substrate (30) may be carried out. Further, the processing medium (26) and electrical bias may be selected to prepare at least one layer on the substrate (30) for bonding the substrate (30) to a second substrate, or to deposit carbon nanotubes (CNTs) with a controlled orientation on the substrate.