Abstract:
Disclosed is a plasma processing apparatus in which a main control unit is capable of managing the processing situation of an exhaust gas in an exhaust gas processing unit through a dilution controller. The exhaust gas processing unit includes a detoxifying device connected to the outlet of a vacuum pump through an exhaust pipe, a dilution gas source connected to the exhaust pipe near the outlet of the vacuum pump through a dilution gas supply pipe, an MFC and an opening/closing valve installed at the middle of the dilution gas supply pipe, a gas sensor attached to the exhaust pipe on the downstream side of an end (node N) of the dilution gas supply pipe, and a dilution controller configured to control the MFC.
Abstract:
Processing gases respectively supplied from multiple gas supply lines into a processing vessel can be switched at a high speed in a uniform manner. A plasma processing apparatus includes the processing vessel configured to perform therein a plasma process to a target substrate; and a gas inlet member including first gas discharge holes and second gas discharge holes which are alternately arranged to be adjacent to each other and respectively communicate with a first gas supply line and a second gas supply line, which are switchable. Further, the first gas discharge holes and the second gas discharge holes independently and respectively introduce a first processing gas and a second processing gas, which are respectively supplied from the first gas supply line and the second gas supply line and used in the plasma process, into the processing vessel.
Abstract:
Processing gases respectively supplied from multiple gas supply lines into a processing vessel can be switched at a high speed in a uniform manner. A plasma processing apparatus includes the processing vessel configured to perform therein a plasma process to a target substrate; and a gas inlet member including first gas discharge holes and second gas discharge holes which are alternately arranged to be adjacent to each other and respectively communicate with a first gas supply line and a second gas supply line, which are switchable. Further, the first gas discharge holes and the second gas discharge holes independently and respectively introduce a first processing gas and a second processing gas, which are respectively supplied from the first gas supply line and the second gas supply line and used in the plasma process, into the processing vessel. Both of the first gas discharge holes and the second gas discharge holes are arranged on a same line extended from a center of the gas inlet member toward a periphery of the gas inlet member along a diameter direction of the gas inlet member.
Abstract:
A gas supply control method uses a pressure control flowmeter and first and second valves provided upstream and downstream, respectively, of the pressure control flowmeter in a gas supply line. The pressure control flowmeter includes a control valve and an orifice. The gas supply control method includes maintaining a pressure P1 of a first gas supply pipe between the orifice and the control valve and a pressure P2 of a second gas supply pipe between the orifice and the second valve so as to satisfy P1>2×P2. The supply of gas is controlled by controlling the opening and closing of the second valve with the first valve being open and the control valve being controlled. A volume V1 of the first gas supply pipe and a volume V2 of the second gas supply pipe have a relationship of V1/V2≧9.
Abstract:
A method for cleaning a process chamber of a processing apparatus including the process chamber and a gas supply mechanism. The gas supply mechanism includes a flow splitter, a first flow path communicating with an upstream end of the flow splitter, a first valve provided in the first flow path, a second flow path communicating with a downstream end of the flow splitter and connected to the process chamber, a second valve provided in the second flow path, a bypass flow path connecting the first flow path and the second flow path, and a bypass valve provided in the bypass flow path. The method includes a step of closing the first valve and the second valve and opening the bypass valve, and a step of cleaning the process chamber by introducing a gas through the bypass flow path into the process chamber after opening the bypass valve.