Abstract:
A developing apparatus including a horizontal substrate holder, a rotating mechanism to rotate the substrate holder, a developer nozzle to supply a developer onto a part of the substrate to form a liquid puddle, a moving mechanism to move the developer nozzle in a radial direction of the rotating substrate, a contact part that moves with the developer nozzle and has a surface opposed to the substrate, which is smaller than the surface of the substrate, and a control unit to output a control signal such that a supply position of the developer on the substrate is moved in the radial direction of the substrate so that the liquid puddle is spread out on a whole surface of the substrate while the contact part is in contact with the liquid puddle.
Abstract:
A coating treatment apparatus supplying a coating solution to a front surface of a rotated substrate and diffusing the supplied coating solution to an outer periphery side of the substrate to thereby apply the coating solution on the front surface of the substrate includes: a substrate holding part holding a substrate; a rotation part rotating the substrate held on the substrate holding part; a supply part supplying a coating solution to a front surface of the substrate held on the substrate holding part; and an airflow control plate provided at a predetermined position above the substrate held on the substrate holding part for locally changing an airflow above the substrate rotated by the rotation part at an arbitrary position.
Abstract:
The present invention is to form an organic film on a substrate having a pattern formed on a front surface thereof and configured to: apply an organic material onto the substrate; then thermally treat the organic material to form an organic film on the substrate; and then perform ultraviolet irradiation processing on the organic film to remove a surface of the organic film down to a predetermined depth, thereby appropriately and efficiently form the organic film on the substrate.
Abstract:
A cleaning liquid and a gas are discharged in sequence to a central portion of a substrate while the substrate is being rotated, and after nozzles that discharge them are moved to a peripheral edge side of the substrate, discharge of the cleaning liquid is switched to a second cleaning liquid nozzle set at a position deviated from a movement locus of the first cleaning liquid nozzle. Both of the nozzles are moved toward the peripheral edge side of the substrate while discharging the cleaning liquid and discharging the gas so that a difference between a distance from the discharge position of the second cleaning liquid nozzle to the central portion of the substrate and a distance from the discharge position of the gas nozzle to the central portion of the substrate gradually decreases.
Abstract:
A liquid treatment method includes: supplying a first organic solvent to a substrate with the substrate being held horizontally by a substrate holder; and thereafter supplying a second organic solvent to a substrate held by the substrate holder, the second solvent having a higher cleanliness than the first solvent.
Abstract:
A developing treatment method for performing a developing treatment on a resist film on a substrate, includes: a pattern forming step of forming a resist pattern by supplying a developing solution to the substrate and developing the resist film on the substrate; a coating step of coating the developed substrate with an aqueous solution of a water-soluble polymer; and a rinse step of cleaning the substrate by supplying a rinse solution to the substrate coated with the aqueous solution of the water-soluble polymer.
Abstract:
A coating treatment method of applying a coating solution onto a substrate, includes: a solvent liquid film formation step of forming a first liquid film of a solvent at a middle portion of the substrate and forming a ring-shaped second liquid film having a film thickness larger than a film thickness of the first liquid film of the solvent at an outer peripheral portion of the substrate; a coating solution supply step of supplying the coating solution to a center portion of the substrate while rotating the substrate at a first rotation speed; and a coating solution diffusion step of diffusing the coating solution on the substrate by rotating the substrate at a second rotation speed higher than the first rotation speed while supplying the coating solution.
Abstract:
A substrate treatment system for treating a substrate, includes: a treatment station in which a plurality of treatment apparatuses which treat the substrate are provided; an interface station which directly or indirectly delivers the substrate between an exposure apparatus which is provided outside the substrate treatment system and performs exposure of patterns on a resist film on the substrate, and the substrate treatment system; a light irradiation apparatus which performs post-exposure using UV light on the resist film on the substrate after the exposure of patterns is performed; and a post-exposure station which houses the light irradiation apparatus and is adjustable to a reduced pressure or inert gas atmosphere, wherein the post-exposure station is connected to the exposure apparatus directly or indirectly via a space which is adjustable to a reduced pressure or inert gas atmosphere.
Abstract:
A developing method includes: horizontally holding an exposed substrate by a substrate holder; forming a liquid puddle on a part of the substrate, by supplying a developer from a developer nozzle; rotating the substrate; spreading the liquid puddle on a whole surface of the substrate, by moving the developer nozzle such that a supply position of the developer on the rotating substrate is moved in a radial direction of the substrate; bringing, simultaneously with the spreading of the liquid puddle on the whole surface of the substrate, a contact part into contact with the liquid puddle, the contact part being configured to be moved together with the developer nozzle and having a surface opposed to the substrate which is smaller than the surface of the substrate. According to this method, an amount of liquid falling down to the outside of the substrate can be inhibited. In addition, since the rotating speed of the substrate can be decreased, spattering of the developer can be inhibited. Further, a throughput can be improved by stirring the developer.
Abstract:
A liquid processing apparatus includes a substrate holding unit arranged within a processing cup and configured to horizontally hold a substrate, a rotating mechanism configured to rotate the substrate holding unit about a vertical axis, a processing liquid supply unit configured to supply a processing liquid onto a surface of the substrate, and an exhaust mechanism configured to discharge an atmospheric gas around the substrate. The exhaust mechanism includes an exhaust flow path connected to an exhaust port formed at the processing cup, a circulation flow path branched from the exhaust flow path and configured to communicate with the processing cup, a gas liquid separator, a first regulator valve installed at one end of the exhaust flow path, and a second regulator valve installed at the other end of the exhaust flow path.