摘要:
Before a plasma doping process is performed, there is generated a plasma of a gas containing an element belonging to the same group in the periodic table as the primary element of a silicon substrate 9, e.g., a monosilane gas, in a vacuum chamber 1. Thus, the inner wall of the vacuum chamber 1 is covered with a silicon-containing film. Then, a plasma doping process is performed on the silicon substrate 9.
摘要:
A method for performing plasma doping which is high in uniformity. A prescribed gas is introduced into a vacuum container from gas supply apparatus while being exhausted through an exhaust hole by a turbomolecular pump as an exhaust apparatus. The pressure in the vacuum container is kept at a prescribed value by a pressure regulating valve. High-frequency power of 13.56 MHz is supplied from a high-frequency power source to a coil which is disposed close to a dielectric window which is opposed to a sample electrode, whereby induction-coupled plasma is generated in the vacuum container. The dielectric window is composed of plural dielectric plates, and grooves are formed in at least one surface of at least two dielectric plates opposed to each other. Gas passages are formed by the grooves and a flat surface(s) opposed to the grooves, and gas flow-out holes which are formed in the dielectric plate that is closest to the sample electrode communicate with the grooves inside the dielectric window. The flow rates of gases that are introduced through the gas flow-out holes and the gas flow-out holes, respectively, can be controlled independently of each other, whereby the uniformity of processing can be increased.
摘要:
Before a plasma doping process is performed, there is generated a plasma of a gas containing an element belonging to the same group in the periodic table as the primary element of a silicon substrate 9, e.g., a monosilane gas, in a vacuum chamber 1. Thus, the inner wall of the vacuum chamber 1 is covered with a silicon-containing film. Then, a plasma doping process is performed on the silicon substrate 9.
摘要:
In a plasma doping device according to the invention, a vacuum chamber (1) is evacuated with a turbo-molecular pump (3) as an exhaust device via a exhaust port 11 while a predetermined gas is being introduced from a gas supply device (2) in order to maintain the inside of the vacuum chamber (1) to a predetermined pressure with a pressure regulating valve (4). A high-frequency power of 13.56 MHz is supplied by a high-frequency power source (5) to a coil (8) provided in the vicinity of a dielectric window (7) opposed to a sample electrode (6) to generate inductive-coupling plasma in the vacuum chamber (1). A high-frequency power source (10) for supplying a high-frequency power to the sample electrode (6) is provided. Uniformity of processing is enhanced by driving a gate shutter (18) and covering a through gate (16).
摘要:
An object is to provide a semiconductor device in which uniform properties are intended and high yields are provided. Process steps are provided in which variations are adjusted in doping and annealing process steps that are subsequent process steps so as to cancel in-plane variations in a substrate caused by dry etching to finally as well provide excellent in-plane consistency in a substrate.
摘要:
A method and an apparatus for plasma processing which can accurately monitor an ion current applied to the surface of a sample. Predetermined gas is exhausted via an exhaust port by a turbo-molecular pump while introducing the gas within the vacuum chamber from a gas supply device, and the pressure within the vacuum chamber is kept at a predetermined value by a pressure regulating valve. A high-frequency power supply for a plasma source supplies a high-frequency power to a coil provided near a dielectric window to generate inductively coupled plasma within the vacuum chamber. A high-frequency power supply for the sample electrode for supplying the high-frequency power to the sample electrode is provided. A matching circuit for the sample electrode and a high-frequency sensor are provided between the sample electrode high-frequency power supply and the sample electrode. An ion current applied to the surface of a sample can be accurately monitored buy using the high-frequency sensor and an arithmetic device.
摘要:
Gas supplied to gas flow passages of a top plate from a gas supply device by gas supply lines forms flow along a vertical direction along a central axis of a substrate, so that the gas blown from gas blow holes can be made to be uniform, and a sheet resistance distribution is rotationally symmetric around a substrate center.
摘要:
The invention provides a method of doping impurities that includes a step of doping impurities in a solid base substance by using a plasma doping method, a step of forming a light antireflection layer that functions to reduce light reflection on the surface of the solid base substance, and a step of performing annealing by light radiation. According to the method, it is possible to reduce the reflectance of light radiated during annealing, to efficiently apply energy an impurity doped layer, to improve activation efficiency, to prevent diffusion, and to reduce sheet resistance of the impurity doped layer.
摘要:
A plasma doping method that can control a dose precisely is realized. In-plane uniformity of the dose is improved. It has been found that, if a bias is applied by irradiating B2H6/He plasma onto a silicon substrate, there is a time at which a dose of boron is made substantially uniform, and the saturation time is comparatively long and ease to stably use, compared with a time at which repeatability of an apparatus control can be secured. The invention has been finalized focusing on the result. That is, if plasma irradiation starts, a dose is initially increased, but a time at which the dose is made substantially uniform without depending on a time variation is continued. In addition, if the time is further increased, the dose is decreased. The dose can be accurately controlled through a process window of the time at which the dose is made substantially uniform without depending on the time variation.
摘要翻译:实现了可以精确控制剂量的等离子体掺杂方法。 剂量的面内均匀性得到改善。 已经发现,如果通过将B 2 H 2 H 6 / He / He等离子体照射到硅衬底上施加偏压,则存在硼剂量为 与能够确保装置控制的可重复性的时间相比,饱和时间比较长,易于稳定地使用。 本发明已经确定了结果。 也就是说,如果等离子体照射开始,则剂量最初增加,但是持续施加剂量基本上均匀而不依赖于时间变化的时间。 此外,如果时间进一步增加,则剂量降低。 剂量可以通过在剂量基本均匀的时间的过程窗口中被准确地控制,而不依赖于时间变化。
摘要:
A plasma doping method that can control a dose precisely is realized. In-plane uniformity of the dose is improved. It has been found that, if a bias is applied by irradiating B2H6/He plasma onto a silicon substrate, there is a time at which a dose of boron is made substantially uniform, and the saturation time is comparatively long and ease to stably use, compared with a time at which repeatability of an apparatus control can be secured. The invention has been finalized focusing on the result. That is, if plasma irradiation starts, a dose is initially increased, but a time at which the dose is made substantially uniform without depending on a time variation is continued. In addition, if the time is further increased, the dose is decreased. The dose can be accurately controlled through a process window of the time at which the dose is made substantially uniform without depending on the time variation.
摘要翻译:实现了可以精确控制剂量的等离子体掺杂方法。 剂量的面内均匀性得到改善。 已经发现,如果通过将B 2 H 2 H 6 / He / He等离子体照射到硅衬底上施加偏压,则存在硼剂量为 与能够确保装置控制的可重复性的时间相比,饱和时间比较长,易于稳定地使用。 本发明已经确定了结果。 也就是说,如果等离子体照射开始,则剂量最初增加,但是持续施加剂量基本上均匀而不依赖于时间变化的时间。 此外,如果时间进一步增加,则剂量降低。 剂量可以通过在剂量基本均匀的时间的过程窗口中被准确地控制,而不依赖于时间变化。