摘要:
Optical interconnect layers and methods of fabrication thereof are described. In addition, the optical interconnect layers integrated into devices such as backplane (BP), printed wiring board (PWB), and multi-chip module (MCM) level devices are described. A representative optical interconnect layer includes a first cladding layer, a second cladding layer, one or more waveguides having a waveguide core and an air-gap cladding layer engaging a portion of waveguide core, wherein the first cladding layer and the second cladding layer engage the waveguide.
摘要:
Wafer-level electronic packages having waveguides and methods of fabricating chip-level electronic packages having waveguides are disclosed. A representative chip-level electronic package includes at least one waveguide having a waveguide core. In addition, another representative chip-level electronic package includes a waveguide having an air-gap cladding layer around a portion of the waveguide core. A representative method for fabricating a chip-level electronic package includes: providing a substrate having a passivation layer disposed on the substrate; disposing a waveguide core on a portion of the passivation layer; disposing a first sacrificial layer onto at least one portion of the passivation layer and the waveguide core; disposing an overcoat layer onto the passivation layer and the first sacrificial layer; and removing the first sacrificial layer to define an air-gap cladding layer within the overcoat polymer layer and around a portion of the waveguide core.
摘要:
Wafer-level electronic packages having waveguides and methods of fabricating chip-level electronic packages having waveguides are disclosed. A representative chip-level electronic package includes at least one waveguide having a waveguide core. In addition, another representative chip-level electronic package includes a waveguide having an air-gap cladding layer around a portion of the waveguide core. A representative method for fabricating a chip-level electronic package includes: providing a substrate having a passivation layer disposed on the substrate; disposing a waveguide core on a portion of the passivation layer; disposing a first sacrificial layer onto at least one portion of the passivation layer and the waveguide core; disposing an overcoat layer onto the passivation layer and the first sacrificial layer; and removing the first sacrificial layer to define an air-gap cladding layer within the overcoat polymer layer and around a portion of the waveguide core.
摘要:
Waveguides having air-gap cladding layers and methods of fabricating waveguides having air-gap cladding layers are disclosed. A representative waveguide includes a waveguide core having an air-gap cladding layer engaging a portion of the waveguide core. In addition, a representative method of fabricating a waveguide having an air-gap cladding layer includes: providing a substrate having a lower cladding layer disposed on the substrate; disposing a waveguide core on a portion of the lower cladding layer; disposing a sacrificial layer onto at least one portion of the lower cladding layer and the waveguide core; disposing an overcoat layer onto the lower cladding layer and the sacrificial layer; and removing the sacrificial layer to define an air-gap cladding layer within the overcoat polymer layer and engaging a portion of the waveguide core.
摘要:
Waveguides and methods of fabrication thereof are presented. A representative waveguide includes a waveguide core and a cladding layer, where the cladding layer surrounds the waveguide core. The waveguide core and cladding can be made of a host material having a plurality of nano-pores, wherein the nano-pores include a sacrificial material, and the sacrificial material can be selectively decomposed in both the core and cladding layers to form a plurality of nano air-gaps.
摘要:
Optoelectronic probe cards, methods of fabrication, and methods of use, are disclosed. Briefly described, one exemplary embodiment includes an optoelectronic probe card adapted to test an electrical quality and an optical quality of an optoelectronic structure under test having electrical and optical components.
摘要:
The present invention entails a phase mask for producing a plurality of volume gratings for use as optical couplers and method for creating the phase mask. The phase mask is produced by creating a plurality of volume gratings having predetermined characteristics which allow the phase mask, when excited by a coherent light wave, to produce a plurality of volume gratings in a recording material.
摘要:
Systems and methods for back-of-die, through-wafer guided-wave optical clock distribution systems (networks) are disclosed. A representative back-of-die, through-wafer guided-wave optical clock distribution system includes an integrated circuit device with a first cladding layer disposed on the back-side of the integrated circuit device, and an core layer disposed on the first cladding layer. The core layer, the first cladding layer, or the second cladding layer can include, but is not limited to, vertical-to-horizontal input diffraction gratings, a horizontal-to-horizontal diffraction gratings, and horizontal-to-vertical output diffraction gratings.
摘要:
High-dielectric-constant (k) materials and electrical devices implementing the high-k materials are provided herein. According to some embodiments, an electrical device includes a substrate and a crystalline-oxide-containing composition. The crystalline-oxide-containing composition can be disposed on a surface of the substrate. Within the crystalline-oxide-containing composition, oxide anions can form at least one of a substantially linear orientation or a substantially planar orientation. A plurality of these substantially linear orientations of oxide anions or substantially planar orientations of oxide anions can be oriented substantially perpendicular or substantially normal to the surface of the substrate such that the oxide-containing composition has a dielectric constant greater than about 3.9 in a direction substantially normal to the surface of the substrate. Other embodiments are also claimed and described.
摘要:
Photo-masks for fabricating surface-relief grating diffractive devices and methods of fabricating surface-relief grating diffractive devices are described. The photo-mask can include refractive elements and/or diffractive elements contained in or on a body element. The photo-mask can be used to simultaneously produce multiple surface-relief grating diffractive devices in a recording material. The photo-mask enables the surface-relief grating diffractive devices to be produced in large quantities while significantly reducing the cost and labor required.