摘要:
A solid state imaging device having a pixel area in which a plurality of light receiving elements are arranged, and a peripheral circuit area adjacent to the pixel area includes: a semiconductor substrate 102 of a first conductivity type or a second conductivity type; a first semiconductor layer 103 of the first conductivity type provided on the semiconductor substrate 102, where the first semiconductor layer 103 is lower in impurity concentration than the semiconductor substrate 102; first impurity regions 104 of the second conductivity type provided in upper portions of the first semiconductor layer 103 in the pixel area; second impurity regions 105 of the first conductivity type provided between the plurality of the first impurity regions 104 adjacent to each other in the pixel area and in the peripheral circuit area; and third impurity regions 106 of the first conductivity type expanded from a position directly under the second impurity regions 105 toward the semiconductor substrate 102 in the pixel area.
摘要:
A solid-state imaging device includes semiconductor substrate; a plurality of photoelectric conversion sections of n-type that are formed at an upper part of semiconductor substrate and arranged in a matrix; output circuit that is formed on a charge detection surface that is one surface of semiconductor substrate and detects charges stored in photoelectric conversion sections; a plurality of isolating diffusion layers of a p-type that are formed under output circuit and include high concentration p-type layers adjacent to respective photoelectric conversion sections; and color filters formed on a light incident surface that is the other surface opposing the one surface of semiconductor substrate and transmit light with different wavelengths. Shapes of respective photoelectric conversion sections correspond to color filters and differ depending on the high concentration p-type layer configuring isolating diffusion layer.
摘要:
A solid-state image sensor includes: a semiconductor substrate 22; a plurality of pixels 23 arranged on the semiconductor substrate 22 and respectively including photoelectric conversion regions 24; and an isolation region 25 electrically isolating the pixels 23 from one another. The first pixel 31 includes a first photoelectric conversion region 32 and a first color filter 41 having a peak of its optical transmission in a first wavelength range. The second pixel 34 adjacent to the first pixel 31 includes a second photoelectric conversion region 35 and a second color filter 42 having peaks in its optical transmission in the first wavelength range and a second wavelength range including shorter wavelengths than the first wavelength range. A portion 33 of a deep portion of the first photoelectric conversion region 32 extends across the isolation region 25 to reach a portion under the second photoelectric conversion region 35.
摘要:
A solid state imaging device includes: an imaging region formed in an upper part of a substrate made of silicon to have a photoelectric conversion portion, a charge accumulation region of the photoelectric conversion portion being of a first conductivity type; a device isolation region formed in at least a part of the substrate to surround the photoelectric conversion portion; and a MOS transistor formed on a part of the imaging region electrically isolated from the photoelectric conversion region by the device isolation region. The width of the device isolation region is smaller in its lower part than in its upper part, and the solid state imaging device further includes a dark current suppression region surrounding the device isolation region and being of a second conductivity type opposite to the first conductivity type.
摘要:
In each of pixels 10 arranged in an array pattern, an insulating isolation part 22 electrically isolates adjacent photoelectric conversion elements 11, and the photoelectric conversion element 11 and an amplifier transistor 14. The insulating isolation part 22 constitutes a first region A between the photoelectric conversion elements 11 where the amplifier transistor 14 is not arranged, and a second region B between the photoelectric conversion elements 11 where the amplifier transistor 14 is arranged. A low concentration first isolation diffusion layer 23 is formed below the insulating isolation part 22 constituting the first region A, and a high concentration second isolation diffusion layer 24 and a low concentration first isolation diffusion layer 23 are formed below the insulating isolation part 22 constituting the second region B. A source/drain region of the amplifier transistor 14 in the second region B is formed in a well region 25 formed simultaneously with the second isolation diffusion layer 24.
摘要:
A solid-state imaging element includes a layered substrate made of silicon and composed of, for example, an N-type substrate, a P-type layer, and an N-type layer. In the layered substrate, an imaging region in which a plurality of pixels are arranged and a peripheral circuit region are formed. A recess reaching the reverse face of the P-type layer is formed in a reverse face portion of the layered substrate in the imaging region, and a reflective film is formed on at least the inner face of the recess. Light is reflected on the reverse face and the obverse face of the layered substrate.
摘要:
Each of pixels 10 arranged in an array pattern includes a photoelectric conversion element 11, a transfer transistor 13 for transferring charges to a floating diffusion layer 12, and an amplifier transistor 14 for outputting the transferred charges to an output line. An insulating isolation part 22 isolates the adjacent photoelectric conversion elements 11, and isolates the photoelectric conversion element 11 and the amplifier transistor 14. The insulating isolation part 22 constitutes a first region A between the photoelectric conversion elements 11 where the amplifier transistor 14 is not arranged, and a second region B between the photoelectric conversion elements 11 where the amplifier transistor 14 is arranged. First and second isolation diffusion layers 23 and 24 are formed below the insulating isolation part 22, and the second isolation diffusion layer 24 is wider than the first isolation diffusion layer 23 in the first region A.
摘要:
A solid state imaging device includes a pixel having a photoelectric conversion element formed on a semiconductor substrate. The photoelectric conversion element includes: a first semiconductor layer of a first conductivity type; a second semiconductor layer of a second conductivity type formed on the first semiconductor layer and forming a junction therebetween; a third semiconductor layer formed on the second semiconductor layer and having a smaller band gap energy than the second semiconductor layer, the third semiconductor layer being made of a single-crystal semiconductor and containing an impurity; and a fourth semiconductor layer of the first conductivity type covering a side surface and an upper surface of the third semiconductor layer. Provision of the fourth semiconductor layer can reduce a current flowing in dark conditions.
摘要:
Each of pixels 10 arranged in an array pattern includes a photoelectric conversion element 11, a transfer transistor 13 for transferring charges to a floating diffusion layer 12, and an amplifier transistor 14 for outputting the transferred charges to an output line. An insulating isolation part 22 isolates the adjacent photoelectric conversion elements 11, and isolates the photoelectric conversion element 11 and the amplifier transistor 14. The insulating isolation part 22 constitutes a first region A between the photoelectric conversion elements 11 where the amplifier transistor 14 is not arranged, and a second region B between the photoelectric conversion elements 11 where the amplifier transistor 14 is arranged. First and second isolation diffusion layers 23 and 24 are formed below the insulating isolation part 22, and the second isolation diffusion layer 24 is wider than the first isolation diffusion layer 23 in the first region A.
摘要:
Solid-state imaging device of the present invention is a backside-illumination-type solid-state imaging device including wiring layer formed on first surface side of semiconductor substrate; and light receiving section that photoelectrically converts light incident from second surface side that is opposite from first surface side, wherein spontaneous polarization film formed of a material having spontaneous polarization is formed on a light receiving surface of light receiving section. Accordingly, a hole accumulation layer can be formed on the light receiving surface of light receiving section, and a dark current can be suppressed.