摘要:
The film thickness of a p-type semiconductor was adjusted in order to achieve 0.85-0.99 times the maximum pre-irradiation open-circuit voltage. In order to achieve 0.85-0.99 times the maximum pre-irradiation open-circuit voltage, it was also shown to be favorable to control acceptor impurity levels in p-type semiconductors. Irradiation conditions of more than 10 hours at 1 SUN or (light intensity [SUN])2×10 or more (time [h])>10 were utilized.
摘要:
A semiconductor device has a MOS gate side surface structure, including a gate electrode filling a trench formed in a semiconductor substrate with an insulator film between the trench and the gate electrode, a gate insulator film covering the surface of the gate electrode, a buffer region of one conductivity type in contact with the semiconductor substrate, a base region of the other conductivity type adjacent to the buffer region on the gate insulator film, and an emitter region of the one conductivity type adjacent to the base region on the side opposite to the buffer region. The semiconductor device and the method of manufacturing thereof can further improve the tradeoff between the on-voltage and the turn-off loss by increasing the amount of electrons injected from a cathode on the surface to increase an amount of carriers on the cathode side in a stable turned-on state of the device.
摘要:
Solar cells are formed of (a) a transparent substrate; (b) a transparent electrode; (c) a first doped layer comprising amorphous silicon oxide, optionally including nitrogen, said first doped layer containing a dopant whereby the first doped layer is of a first conductivity type and has an optical gap of from 2.0 to 2.3 eV and a ratio of light conductivity to dark conductivity of 5 or less at 25.degree. C.; (d) a layer of intrinsic amorphous silicon; (e) a second doped layer comprising amorphous silicon, said second doped layer containing a dopant whereby the second doped layer is of a second conductivity type different from the first conductivity type; and (f) a second electrode. The first doped layer may be of either n-type or p-type conductivity. The first doped layer can be formed over the transparent electrode by decomposing a gas mixture comprising SiH.sub.4, an oxygen source gas selected from N.sub.2 O or CO.sub.2, and a dopant, in a hydrogen carrier at a substrate temperature of 150.degree. to 250.degree. C., the amount of hydrogen being from 10 to 50 times the amount of SiH.sub.4, said first doped layer being of a first conductivity type. An interfacial layer of intermediate gap may also be included when the first doped layer is a p-type layer. Also described is a method for the formation of an amorphous silicon-oxide film to be utilized in making the thin-film solar cell.
摘要:
A semiconductor device has a MOS gate side surface structure, including a gate electrode filling a trench formed in a semiconductor substrate with an insulator film between the trench and the gate electrode, a gate insulator film covering the surface of the gate electrode, a buffer region of one conductivity type in contact with the semiconductor substrate, a base region of the other conductivity type adjacent to the buffer region on the gate insulator film, and an emitter region of the one conductivity type adjacent to the base region on the side opposite to the buffer region. The semiconductor device and the method of manufacturing thereof can further improve the tradeoff between the on-voltage and the turn-off loss by increasing the amount of electrons injected from a cathode on the surface to increase an amount of carriers on the cathode side in a stable turned-on state of the device.
摘要:
A semiconductor device has a MOS gate side surface structure, including a gate electrode filling a trench formed in a semiconductor substrate with an insulator film between the trench and the gate electrode, a gate insulator film covering the surface of the gate electrode, a buffer region of one conductivity type in contact with the semiconductor substrate, a base region of the other conductivity type adjacent to the buffer region on the gate insulator film, and an emitter region of the one conductivity type adjacent to the base region on the side opposite to the buffer region. The semiconductor device and the method of manufacturing thereof can further improve the tradeoff between the on-voltage and the turn-off loss by increasing the amount of electrons injected from a cathode on the surface to increase an amount of carriers on the cathode side in a stable turned-on state of the device.
摘要:
The present invention provides a photovoltaic module with bypass diodes that has a high electricity generating capacity per unit area and high productivity. This photovoltaic module includes a photovoltaic cell assembly in which a plurality of photovoltaic cells are electrically connected in series, and a diode assembly in which a plurality of diodes are formed on a substrate in the arrangement that is consistent with the arrangement of the photovoltaic cells to which the diodes are to be attached. The diode assembly is disposed on a non-light receiving side of the photovoltaic cells, and the diodes are electrically connected to the photovoltaic cells. The photovoltaic cell assembly and the diode assembly are sealed and united by a sealant.
摘要:
A semiconductor device has a MOS gate side surface structure, including a gate electrode filling a trench formed in a semiconductor substrate with an insulator film between the trench and the gate electrode, a gate insulator film covering the surface of the gate electrode, a buffer region of one conductivity type in contact with the semiconductor substrate, a base region of the other conductivity type adjacent to the buffer region on the gate insulator film, and an emitter region of the one conductivity type adjacent to the base region on the side opposite to the buffer region. The semiconductor device and the method of manufacturing thereof can further improve the tradeoff between the on-voltage and the turn-off loss by increasing the amount of electrons injected from a cathode on the surface to increase an amount of carriers on the cathode side in a stable turned-on state of the device.
摘要:
A method of evaluating a thickness of a film during a polishing process includes the steps of irradiating light onto a surface of the film during the polishing process; obtaining a differential signal of reflection spectra at a polishing time t and a polishing time t−Δt with a time difference Δt from the polishing time t; and analyzing the differential signal to obtain a thickness d of the film at the polishing time t.
摘要:
A method of evaluating a thickness of a film during a polishing process includes the steps of irradiating light onto a surface of the film during the polishing process; obtaining a differential signal of reflection spectra at a polishing time t and a polishing time t−Δt with a time difference Δt from the polishing time t; and analyzing the differential signal to obtain a thickness d of the film at the polishing time t.