SCANNING PROBE MICROSCOPE AND SAMPLE OBSERVING METHOD USING THE SAME
    2.
    发明申请
    SCANNING PROBE MICROSCOPE AND SAMPLE OBSERVING METHOD USING THE SAME 有权
    扫描探针显微镜和使用其的样品观察方法

    公开(公告)号:US20130145507A1

    公开(公告)日:2013-06-06

    申请号:US13586754

    申请日:2012-08-15

    IPC分类号: G01Q60/18

    CPC分类号: G01Q60/18 G01Q60/22

    摘要: In a near-field scanning microscope using an aperture probe, the upper limit of the aperture formation is at most several ten nm in practice. In a near-field scanning microscope using a scatter probe, the resolution ability is limited to at most several ten nm because of the external illuminating light serving as background noise. Moreover, measurement reproducibility is seriously lowered by a damage or abrasion of a probe. Optical data and unevenness data of the surface of a sample can be measured at a nm-order resolution ability and a high reproducibility while damaging neither the probe nor the sample by fabricating a plasmon-enhanced near-field probe having a nm-order optical resolution ability by combining a nm-order cylindrical structure with nm-order microparticles and repeatedly moving the probe toward the sample and away therefrom at a low contact force at individual measurement points on the sample.

    摘要翻译: 在使用孔径探针的近场扫描显微镜中,实际上孔径形成的上限为至多几十nm。 在使用散射探针的近场扫描显微镜中,由于外部照明光作为背景噪声,分辨能力被限制在至多几十nm。 此外,通过探针的损伤或磨损,测量再现性被严重降低。 可以以nm级分辨能力和高再现性测量样品表面的光学数据和不均匀性数据,同时通过制造具有nm级光学分辨率的等离子体增强近场探针而不损害探针和样品 通过将nm级圆柱形结构与nm级微粒组合,并在样品上的各个测量点处以低接触力将探针重复地移动到样品并从中离开它们的能力。

    SCANNING PROBE MICROSCOPE AND METHOD OF OBSERVING SAMPLE USING THE SAME
    3.
    发明申请
    SCANNING PROBE MICROSCOPE AND METHOD OF OBSERVING SAMPLE USING THE SAME 有权
    扫描探针显微镜及其使用方法观察样品

    公开(公告)号:US20100218287A1

    公开(公告)日:2010-08-26

    申请号:US12712745

    申请日:2010-02-25

    IPC分类号: G01Q20/02 G01Q60/18

    CPC分类号: G01Q60/22 G01Q70/12

    摘要: In a scanning probe microscope, a nanotube and metal nano-particles are combined together to configure a plasmon-enhanced near-field probe having an optical resolution on the order of nanometers as a measuring probe in which a metal structure is embedded, and this plasmon-enhanced near-field probe is installed in a highly-efficient plasmon exciting unit to repeat approaching to and retracting from each measuring point on a sample with a low contact force, so that optical information and profile information of the surface of the sample are measured with a resolution on the order of nanometers, a high S/N ratio, and high reproducibility without damaging both of the probe and the sample.

    摘要翻译: 在扫描探针显微镜中,将纳米管和金属纳米粒子组合在一起构成具有纳米数量级的光学分辨率的等离子体增强型近场探针作为嵌入金属结构的测量探针,该等离子体激元 增强的近场探头安装在高效的等离子体激元单元中,以低接触力重复接近和缩回样品上的每个测量点,从而测量样品表面的光学信息和轮廓信息 分辨率为纳米级,高S / N比,高重现性,不损伤探头和样品。

    SCANNING PROBE MICROSCOPE
    4.
    发明申请
    SCANNING PROBE MICROSCOPE 有权
    扫描探针显微镜

    公开(公告)号:US20130205454A1

    公开(公告)日:2013-08-08

    申请号:US13726764

    申请日:2012-12-26

    IPC分类号: G01Q10/00

    摘要: In the case of measuring a pattern having a steep side wall, a probe adheres to the side wall by the van der Waals forces acting between the probe and the side wall when approaching the pattern side wall, and an error occurs in a measured profile of the side wall portion. When a pattern having a groove width almost equal to a probe diameter is measured, the probe adheres to both side walls, the probe cannot reach the groove bottom, and the groove depth cannot be measured. When the probe adheres to a pattern side wall in measurements of a microscopic high-aspect ratio pattern using an elongated probe, the probe is caused to reach the side wall bottom by detecting the adhesion of the probe to the pattern side wall, and temporarily increasing a contact force between the probe and the sample. Also, by obtaining the data of the amount of torsion of a cantilever with the shape data of the pattern, a profile error of the side wall portion by the adhesion is corrected by the obtained data of the amount of torsion.

    摘要翻译: 在测量具有陡峭侧壁的图案的情况下,当接近图案侧壁时,探针通过作用在探针和侧壁之间的范德华力附着在侧壁上,并且在测量的轮廓中发生错误 侧壁部分。 当测量具有几乎等于探针直径的槽宽度的图案时,探针粘附到两个侧壁,探针不能到达凹槽底部,并且不能测量凹槽深度。 当使用细长的探针测量微观高纵横比图案时探头粘附到图案侧壁上时,通过检测探针与图案侧壁的粘附力使探针到达侧壁底部,并暂时增加 探针和样品之间的接触力。 此外,通过利用图案的形状数据获得悬臂的扭转量的数据,通过获得的扭转量的数据来校正侧壁部分的粘附的轮廓误差。