摘要:
A control of a vehicle motion control device 10 is as follows during an oversteer restraining control. Specifically, when tire inflation pressure is appropriate, the device sets braking force exerted on each of front and rear wheels at the outer side of the turning direction so as to be reference braking forces Ff1 and Fr1, that are generated when an absolute value of a lateral acceleration deviation ΔGy is not less than a reference value a1 and that respectively increase up to an upper limit value ff and upper limit value fr in accordance with the increase in the absolute value of the lateral acceleration deviation ΔGy. On the other hand, when a tire inflation pressure of one of the front and rear wheels at the outer side of the turning direction is lowered, the device sets the braking force, such that the braking force starts to be generated from when the absolute value of the lateral acceleration deviation ΔGy is smaller than the reference value a1 by an amount in accordance with the reduction in the tire inflation pressure and that the upper limit value of the braking force with respect to the wheel whose tire inflation pressure is lowered is decreased by an amount in accordance with the reduction in the tire inflation pressure and that the upper limit value of the braking force with respect to the wheel that is not the wheel whose tire inflation pressure is lowered is increased by an amount in accordance with the reduction in the tire inflation pressure.
摘要:
A motion control device 10 for a vehicle exerts braking force only on the rear wheel at the inner side of the turning direction for generating a yawing moment on the vehicle only in the turning direction of the vehicle when an absolute value of an actual lateral acceleration Gy is not more than a value Gyth, i.e., when there is a small possibility of the occurrence of an excessive roll angle on the vehicle body, in case where the turning state of the vehicle is the understeer state. On the other hand, it exerts braking force not only on the rear wheel at the inner side of the turning direction, but also on the front and rear wheels at the outer side of the turning direction for generating a yawing moment in the direction opposite to the turning direction too, when the absolute value of the actual lateral acceleration Gy exceeds the value Gyth, i.e., when there is a great possibility of the occurrence of the excessive roll angle on the vehicle body, in case where the turning state of the vehicle is the understeer state.
摘要:
A control of a vehicle motion control device 10 is as follows during an oversteer restraining control. Specifically, when tire inflation pressure is appropriate, the device sets braking force exerted on each of front and rear wheels at the outer side of the turning direction so as to be reference braking forces Ff1 and Fr1, that are generated when an absolute value of a lateral acceleration deviation ΔGy is not less than a reference value a1 and that respectively increase up to an upper limit value ff and upper limit value fr in accordance with the increase in the absolute value of the lateral acceleration deviation ΔGy. On the other hand, when a tire inflation pressure of one of the front and rear wheels at the outer side of the turning direction is lowered, the device sets the braking force, such that the braking force starts to be generated from when the absolute value of the lateral acceleration deviation ΔGy is smaller than the reference value a1 by an amount in accordance with the reduction in the tire inflation pressure and that the upper limit value of the braking force with respect to the wheel whose tire inflation pressure is lowered is decreased by an amount in accordance with the reduction in the tire inflation pressure and that the upper limit value of the braking force with respect to the wheel that is not the wheel whose tire inflation pressure is lowered is increased by an amount in accordance with the reduction in the tire inflation pressure.
摘要:
A braking force distribution control device for an automotive vehicle is designed to make it possible to initiate a braking force distribution control as rapidly as possible upon rapid braking operation while at the same time being capable of preventing a malfunction of the braking force distribution control even when one of hydraulic pressure lines fails. The braking force distribution control establishes a predetermined relationship between the wheel cylinder pressure of a front wheel and a wheel cylinder pressure of a rear wheel on the basis of a comparison between the wheel speeds of the front and rear wheels. The braking force distribution control is initiated when the decelerations of all the wheels exceed a set value.
摘要:
The present invention is directed to a brake control system for a vehicle, which includes a cut-off valve for opening or closing a main passage, which communicates a master cylinder with a wheel brake cylinder, and a pump for discharging the pressurized brake fluid to the wheel brake cylinder, with an outlet of the pump connected to a position between the cut-off valve and the wheel brake cylinder. An inlet valve is provided for opening or closing an auxiliary passage which communicates an inlet of the pump with the master cylinder. And, a controller is adapted to place the cut-off valve in a closed position thereof, place the inlet valve in an open position thereof, and actuate the pump to supply the pressurized brake fluid discharged from the pump into the wheel brake cylinder, when a brake-assist control is to be performed. A detection device such as a pressure sensor is provided for detecting an amount of operation of a brake pedal, so that the controller controls an amount of operation of the pump in response to variation of the amount of operation of the brake pedal detected by the detection device.
摘要:
A brake control apparatus includes a first valve to open and close a main line between a master cylinder and a wheel cylinder, a pump connected between a first valve and the wheel cylinder to supply pressurized brake fluid to the wheel cylinder, an auxiliary line connecting the inlet side of the pump to a master cylinder, a second valve to open and close the auxiliary line, a pressure sensor to detect the output pressure of the master cylinder and an electronic control unit which controls the first valve, the second valve, and the pump based upon the pressure detected by the pressure sensor so that the wheel cylinder receives a higher pressure than that of the master cylinder. The electronic control unit also closes the second valve while the pressure sensor detects the pressure over a certain pressure determined by the road surface condition.
摘要:
An object is to simplify the structure of electric wirings, and to facilitate installation. A vehicular motion quantity sensor and a steering angle sensor are installed in the same casing or mechanically connected directly with the casing. Therefore, it is possible to put together electrical wiring harnesses for transmitting the detection signals from the vehicular motion quantity sensor and the steering angle sensor to an ECU. Moreover, since all of the sensors can be located in the same compartment, the structure of the electrical wiring harnesses can be simplified and can be installed more easily.
摘要:
A vehicle motion control device reduces noise resulting from operation of a vacuum booster when an automatic pressure control is performed by properly controlling the energization of a linear solenoid of a booster actuator. An automatic hydraulic pressure generator is controlled in accordance with the vehicle motion condition and a hydraulic pressure control valve device is controlled to perform the automatic pressure control. A target electric current of the linear solenoid for actuating the vacuum booster is instantaneously increased to a starting target value which corresponds to an electric current value immediately before starting the operation of the vacuum booster and which is less than a maximum value of the target electric current, and then is gradually increased approximately to the maximum value of the target electric current.
摘要:
The present invention is directed to a brake control system, which includes a first pressure circuit and a second pressure circuit for communicating a master cylinder with two sets of wheel cylinders, respectively. In each pressure circuit, a modulator is arranged to modulate the braking pressure in each wheel cylinder, a pressure pump is disposed to supply pressurized brake fluid to each wheel cylinder through each modulator, a normally open first valve is arranged to open or close a first passage for communicating the master cylinder with the modulator, and a normally closed second valve is arranged to open or close a second passage for communicating a reservoir directly with the inlet of each pump, or communicating the reservoir with it through the master cylinder. The pressurized brake fluid is supplied to each pressure circuit including the second valve at the inlet of the pump to perform an auxiliary pressurization. In the case where at least the second valve in the first pressure circuit opens the second passage, and the auxiliary pressurization is performed, the communication between the wheel cylinders in the second pressure circuit is blocked, when the brake pedal is not depressed, and the wheel cylinders in the second pressure circuit is communicated with the master cylinder, when the brake pedal is depressed.
摘要:
The present invention is directed to an apparatus for determining a state of braking operation of a vehicle. Wheel speed sensors are provided for detecting wheel speeds of a front wheel and a rear wheel. A wheel speed difference is calculated between the wheel speed of the front wheel and the wheel speed of the rear wheel detected by the wheel speed sensors. A braking operation detection device is provided for detecting an operation of a brake pedal. Based upon the calculated wheel speed difference and the operation of the brake pedal detected by the braking operation detection device, it is determined whether the brake pedal was rapidly depressed. In accordance with this result, and in response to the wheel speeds detected by the wheel speed sensors, the braking force applied to the front wheel can be adjusted in a predetermined relationship with the braking force applied to the rear wheel.