摘要:
A semiconductor device in which a trench-shaped groove (20) and a depression (100), which is formed by removing at least part of the area above and adjacent to the groove, are formed to be continuous on one side of the semiconductor substrate, in which aforementioned groove and aforementioned depression is buried a polysilicon conductive layer (103), the top of which conductive layer is converted into an insulator (102), the bottom of which insulating film (102) is contained in the depression (100).
摘要:
A semiconductor device in which a trench-shaped groove (20) and a depression (100), which is formed by removing at least part of the area above and adjacent to the groove, are formed to be continuous on one side of the semiconductor substrate, in which aforementioned groove and aforementioned depression is buried a polysilicon conductive layer (103), the top of which conductive layer is converted into an insulator (102), the bottom of which insulating film (102) is contained in the depression (100). It is possible to form the element areas according to designs, and it is also possible to flatten the surface without wire cutting in the conductive layer.
摘要:
A dynamic RAM in which a groove (20) is formed on the main surface of a semiconductor substrate; a highly concentrated semiconductor layer (80) having one conductive type is formed inside the groove (20) to a depth sufficient to contain the first and second impurity diffusion areas (53) and (22), which are formed on the top of this groove and have the opposite conductive type; a capacitor C.sub.1 formed inside the groove (20), while a transfer gate Tr.sub.1 is formed on the highly concentrated semiconductor layer (80); and the diffusion area (53) is used to connect them.
摘要:
A type of semiconductor device with a configuration characterized by the fact that an electroconductive film (90) is formed beforehand in connection to step (54a) of insulating film (54), and an electroconductive layer (63) with step from the aforementioned electroconductive film is coated to form the side contact of the memory cell.Even in the case when breakage takes place in electroconductive layer (63), the electrical conduction is still maintained via substrate electroconductive film (90), and no wire breakage, in effect, takes place. In addition, it is possible to form the pattern for the aforementioned electroconductive layer by, for instance, etching back method without applying a special mask; hence, the manufacturing process is simplified.
摘要:
A type of semiconductor device with a configuration characterized by the fact that an electroconductive film (90) is formed beforehand in connection to step (54a) of insulating film(54), and an electroconductive layer (63) with step from the aforementioned electroconductive film is coated to form the side contact of the memory cell. Even in the case when breakage takes place in electroconductive layer (63), the electrical conduction is still maintained via electroconductive film (90), and no wire breakage, in effect, takes place. In addition, it is possible to form the pattern for the aforementioned electroconductive layer by, for instance, etching back method without applying a special mask; hence, the manufacturing process is simplified.
摘要:
Substrate bias generating circuit for MIS semiconductor device comprising an oscillating circuit, a capacitor, an MOS transistor and a Schottky barrier diode. One end of the oscillating circuit is connected to a V.sub.ss terminal which provides a reference potential. The capacitor is connected at one end thereof to the other end of the oscillating circuit. The MOS transistor is connected between the V.sub.ss terminal and the other end of the capacitor, with the Schottky barrier diode being connected between a node located between the other end of the capacitor and the MOS transistor, and the substrate. The Schottky barrier diode is operated by the majority carrier, thereby enabling the majority charge to be directly pumped out of the substrate and into the terminal V.sub.ss through the Schottky barrier diode with stability without requiring an injection of the minority charge into the semiconductor substrate. The pumping of the charge out of the substrate is permitted by lowering the potential of the node through the oscillating circuit.
摘要:
A process is disclosed herein for increasing yield in a semiconductor circuity having redundant circuitry for replacing defective normal circuitry in the semiconductor integrated circuit. In the first step, an insufficient sinter operation (50) is carried out in a hydrogen atmosphere at a temperature of less than 350.degree. C. At this temperature, no significant change will be seen in the interface trap density. Thereafter, the integrated circuit is tested (54,56) and the defective normal circuitry then is replaced (58) with the redundant circuitry. The integrated circuit is then subjected to a sufficient sinter operation (64) which is an operation wherein the substrate is disposed at a temperature between 350.degree. C.-500.degree. C. for more than 30 minutes. This sufficient sinter operation is performed in a hydrogen atmosphere, allowing dangling bonds at the interface to be terminated with hydrogen. Preferable, the optimal temperature for the sufficient sinter is approximately 400.degree. C. The integrated circuit is then subjected to a reliability and burn-in procedure.
摘要:
An organic electroluminescent display device includes an organic electroluminescent element formed on a substrate thereof and having an organic compound layer group sandwiched between cathodes and anodes. The organic compound layer group has laminated electroluminescence functional layers formed of at least one kind of organic compound. Further, the organic electroluminescent display device includes an airtight case that encloses the organic electroluminescent element with a space formed between the airtight case itself and the organic electroluminescent element and isolates the organic electroluminescent element from outside air, and a filler gas filling the space within the airtight case. The filler gas contains at least one kind of combustion supporting gas.
摘要:
In a copy paper separating device for use in a transfer type electrophotographic copying machine which includes a conductive carrier member, preferably in the form a conductive endless belt extended between a pair of pulleys. The conductive carrier member is disposed in the periphery of the photosensitive member to which a copy paper is brought into contact for the transfer of a toner image formed on the photosensitive member. The potential of the conductive carrier member is maintained nearly at zero level during the first step of the separating operation; whereas, the potential of the carrier member is increased to a predetermined value of the polarity opposite to that of the toner image during the second step.
摘要:
It is an object of the present invention to provide an improved method of manufacturing a self-emission unit including a self-emission module having self-emission elements formed on a substrate, and a frame for protecting the self-emission modules, without carrying out some troublesome steps, thus making it possible to manufacture the self-emission unit in a shortened time. Another object of the present invention is to provide an improved self-emission unit capable of being attached to an attachment base with a high precision. The self-emission unit has a self-emission module and a frame. The frame is provided to cover a part or the whole of the self-emission module so as to protect the same. Further, the frame has fastening sections for attaching the self-emission module to an attachment base. The frame is formed integrally with the self-emission module so that it is possible to avoid some troublesome steps and thus shorten manufacturing time. The foregoing structure also makes it possible to improve an attachment precision when attaching the self-emission unit to an attachment base.