摘要:
The present invention provides methods and apparatuses that can improve measurement accuracy in interferometers. The invention provides methods for determining digital compensation filters that measure a frequency response or responses to be compensated, and then determining a filter target response from the inverse of the frequency response or responses. A digital compensation filter can be determined from the filter target response using a discrete sum of cosines with a phase argument. The invention also allows other desired filter responses to be integrated into the filter target response before determining the digital compensation filter.
摘要:
The present invention provides methods and apparatuses that can improve measurement accuracy in interferometers. The invention provides methods for determining digital compensation filters that measure a frequency response or responses to be compensated, and then determining a filter target response from the inverse of the frequency response or responses. A digital compensation filter can be determined from the filter target response using a discrete sum of cosines with a phase argument. The invention also allows other desired filter responses to be integrated into the filter target response before determining the digital compensation filter.
摘要:
The present invention provides improved methods and apparatuses for accurate measurements using interferometers. A functional relationship between the optical path difference and time is determined from a reference signal from an interferometer. The times at which the interferometer had specific optical path differences can be determined from the functional relationship. Those times can then be used to select times at which the spectroscopic signal from the interferometer was produced at the specific optical path differences. The invention can be applied, as examples, to maintain instrument calibration, and to transfer or compare calibrations or measurements across different interferometers.
摘要:
The present invention provides improved methods and apparatuses for accurate measurements using interferometers. A functional relationship between the optical path difference and time is determined from a reference signal from an interferometer. The times at which the interferometer had specific optical path differences can be determined from the functional relationship. Those times can then be used to select times at which the spectroscopic signal from the interferometer was produced at the specific optical path differences. The invention can be applied, as examples, to maintain instrument calibration, and to transfer or compare calibrations or measurements across different interferometers.
摘要:
The present invention relates generally to non-invasive methods and apparatuses for determining analyte properties of a subject and identity characteristics of a subject. Embodiments of the present invention provide analyte property determination and identity determination or verification from the same spectroscopic information, making unauthorized use or misleading results less likely that in systems that include separate analyte and identity determinations. The invention can be used to control and monitor individuals accessing controlled environments.
摘要:
Methods and apparatuses for the determination of an attribute of the tissue of an individual use non-invasive Raman spectroscopy. For example, the alcohol concentration in the blood or tissue of an individual can be determined non-invasively. A portion of the tissue is illuminated with light, the light propagates into the tissue where it is Raman scattered within the tissue. The Raman scattered light is then detected and can be combined with a model relating Raman spectra to alcohol concentration in order to determine the alcohol concentration in the blood or tissue of the individual. Correction techniques can be used to reduce determination errors due to detection of light other than that from Raman scattering from the alcohol in the tissue. Other biologic information can be used in combination with the Raman spectral properties to aid in the determination of alcohol concentration, for example age of the individual, height of the individual, weight of the individual, medical history of the individual and his/her family, ethnicity, skin melanin content, or a combination thereof. The method and apparatus can be highly optimized to provide reproducible and, preferably, uniform radiance of the tissue, low tissue sampling error, depth targeting of the tissue layers or sample locations that contain the attribute of interest, efficient collection of Raman spectra from the tissue, high optical throughput, high photometric accuracy, large dynamic range, excellent thermal stability, effective calibration maintenance, effective calibration transfer, built-in quality control, and ease-of-use.
摘要:
An optical sampling subsystem and method that reduces the effect of errors in an optical sampling subsystem when heterogeneously distributed samples are measured in the path of a spectrometer. The optical sampling subsystem is used to collect the non-uniformly distributed radiation exiting the heterogeneous sample and produce a uniform irradiance at its output. The output is then directed into the wavenumber (inverse of wavelength in centimeters) dispersive or modulating device of the spectrometer. The resulting spectra exhibit less spectral complexity arising from components of the sampling subsystem design and the heterogeneous sample, in particular, the effect of wavenumber shift is minimized. Improved quantitative predictions, qualitative analysis and calibration transfer are direct consequences of the reduced spectral complexity.
摘要:
Methods and apparatuses for the determination of an attribute of the tissue of an individual use non-invasive Raman spectroscopy. For example, the alcohol concentration in the blood or tissue of an individual can be determined non-invasively. A portion of the tissue is illuminated with light, the light propagates into the tissue where it is Raman scattered within the tissue. The Raman scattered light is then detected and can be combined with a model relating Raman spectra to alcohol concentration in order to determine the alcohol concentration in the blood or tissue of the individual. Correction techniques can be used to reduce determination errors due to detection of light other than that from Raman scattering from the alcohol in the tissue. Other biologic information can be used in combination with the Raman spectral properties to aid in the determination of alcohol concentration, for example age of the individual, height of the individual, weight of the individual, medical history of the individual and his/her family, ethnicity, skin melanin content, or a combination thereof. The method and apparatus can be highly optimized to provide reproducible and, preferably, uniform radiance of the tissue, low tissue sampling error, depth targeting of the tissue layers or sample locations that contain the attribute of interest, efficient collection of Raman spectra from the tissue, high optical throughput, high photometric accuracy, large dynamic range, excellent thermal stability, effective calibration maintenance, effective calibration transfer, built-in quality control, and ease-of-use.
摘要:
A vertical cavity surface-emitting laser (VCSEL) package utilized as a laser reference for use in interferometry. The primary disadvantage of VCSELs, in terms of interferometry, has been found to be the relatively poor wavenumber stability of the beam. The present invention is a method and apparatus that makes viable a VCSEL package suitable for use as a reference in interferometry. The VCSEL package incorporates current control, temperature control and an algorithm for correcting wavenumber drift. The algorithm is derived from spectroscopic analysis of a reference sample having a known spectrum and comparing the generated spectrum to the known spectrum.
摘要:
Coronary artery calcification (CAC) occurs at an earlier age in diabetes and is a risk factor for coronary artery disease (CAD) in subjects with or without diabetes. One postulated mechanism for the increased CAC is the accelerated accumulation of advanced glycation end products (AGEs) in the vasculature. As certain collagen AGEs fluoresce, skin intrinsic fluorescence (SIF) can act as a novel maker of collagen AGEs levels. The present invention provides methods and apparatuses for detecting SIF that can be a useful marker of CAD risk and a therapeutic target.