摘要:
Disclosed is a nonaqueous electrolyte battery including a battery element contained in an outer covering member composed of a laminated film and sealed therein by heat seal, and a gas absorbable material interposed between the outermost layer of the outer covering member and the battery element. Such a battery is advantageous in that even if gas occurs in the battery element, the laminated film as the outer covering member is prevented from being swelled.
摘要:
A nonaqueous-electrolyte battery that includes a unit cell and a battery case that encloses the units. The battery case includes a laminate film that sealingly encloses the units by heat welding at least a portion of the laminate film. Upon heat welding, the unit cell further includes a number of electrode terminal leads in which a portion of the electrical terminal leads extend from the battery case. A sealant layer is further applied to at least a portion of the electrodeterminal leads so as to contact the battery case upon heat welding in order to further seal the case and to further prevent short circuiting of the nonaqueous-electrolyte battery.
摘要:
A nonaqueous electrolyte battery is disclosed which has an improved volume energy density and satisfactory impact resistance, a heat radiating characteristic and producibility. The battery element is accommodated in a casing constituted by a laminate film so as to be sealed by welding. Electrode-terminal leads electrically conducted to electrodes which constitute the battery element are sandwiched by welded portions so as to be exposed to the outside portion of the casing. A control circuit of the battery is mounted on a welded portion of the casing. Since the control circuit of the battery is mounted on the welded portion of the casing, the space in the battery in which the battery element is not present can effectively be used. Therefore, the volume efficiency can considerably be improved.
摘要:
A nonaqueous electrolyte battery that includes a unit cell and a battery case that encloses the unit cell. The battery case includes a laminate film that encloses the unit cells by heat welding at least a portion of the laminate film. Upon heat welding, the unit cell further includes a number of electrode terminal leads in which a portion of the electrical terminal leads extend from the battery case. A sealant layer is further applied to at least a portion of the electrode terminal leads so as to contact the battery case upon heat welding in order to further seal the case and to further prevent short circuiting of the nonaqueous-electrolyte battery.
摘要:
A nonaqueous-electrolyte battery which is capable of preventing introduction of water and deterioration in the capacity thereof is disclosed. The nonaqueous-electrolyte battery according to the present invention incorporates a case constituted by laminated films; and a unit cell which is accommodated in the case and having a structure that the peripheries of the case is sealed with heat, wherein when an assumption is made that the quantity of water capable of penetrating a heat-weld resin layer which is the innermost layer of the case having a thickness of T (μm) is R (g/m2·day), the cross sectional area of resin in a heat-sealed portion is S (cm2), an average width of the heat-sealed portion is W (cm) and the capacity of the unit cell is C (Wh), the following relationship is satisfied: (T×R×S)/(W×C)≦0.96 μg/Wh·day. When the foregoing structure is employed, water introducing rate can be reduced to 350 μg/year or lower per capacity (Wh).
摘要:
The present invention provides a gel electrolyte cell including a non-aqueous electrolytic solution containing lithium-containing electrolyte salt solved in a non-aqueous solvent and made into a gel state by a matrix polymer, and the gel electrolyte contains vinylene carbonate or derivative thereof in the amount not less than 0.05 wt % and not greater than 5 wt %. This gel electrolyte exhibits an excellent chemical stability with the negative electrode, strength, and liquid-retention characteristic. This gel electrolyte enables to obtain a gel electrolyte cell satisfying the cell capacity, cycle characteristic, load characteristic, and low-temperature characteristic.
摘要:
It is an object to quickly disperse heat generated when short circuit occurs between a positive electrode and a negative electrode. A nonaqueous-electrolyte battery is disclosed which incorporates: an encapsulating medium constituted by a laminated film in which a unit cell is accommodated, wherein the laminated film of the encapsulating medium contains a metal material having a heat conductivity k at room temperatures which is 230 Wm−1K−1 or higher. Moreover, ratio R of the volume of the metal material portion of the encapsulating medium with respect to a capacity of 1 mAh of the unit cell is 0.0002 cm3/mAh≦R≦0.003 cm3/mAh.
摘要翻译:本发明的目的是快速分散在正极和负极之间发生短路时产生的热量。 公开了一种非水电解质电池,其包括:由容纳单元电池的层叠膜构成的封装介质,其中,所述封装介质的层叠膜含有室温下的导热系数k为230Wm的金属材料 -1K-1以上。 此外,封装介质的金属材料部分的体积相对于单电池的1mAh的容量的比率R为0.0002cm 3 / mAh <= R = 0.003cm 3 / mAh。
摘要:
The lithium secondary battery positive electrode provided by the present invention has a positive electrode collector and a positive active material layer formed on the collector. The positive active material layer is composed of a matrix phase containing at least one particulate positive active material and at least one binder, and an aggregate phase dispersed in the matrix phase, constituted by aggregation of at least one particulate positive active material and containing substantially no binder.
摘要:
A positive electrode for a lithium secondary battery provided by the present invention includes a positive electrode active material layer having a particulate positive electrode active material constituted by a composite oxide containing lithium and at least one type of transition metal element, and at least one type of binding material constituted by a polymer compound having at least one functional group, and a conductive carbonaceous coating film is formed on a surface of the positive electrode active material. Further, the polymer compound constituting the binding material is molecularly bound to carbon atoms constituting the carbonaceous coating film of at least a part of the positive electrode active material, whereby a composite compound is formed from the polymer compound molecularly bound to the carbon atoms and a carbon network constituting the carbonaceous coating film containing the carbon atoms.
摘要:
An object is to provide a method of charging and maintaining a lithium ion secondary battery which method is capable of preventing a decrease in the capacity of the battery. Another object is to provide a battery system capable of preventing a decrease in battery capacity, and a vehicle and a battery-mounted device which have such a battery system mounted therein. A method of charging and maintaining lithium ion secondary batteries 101 using positive active material particles 135 made from a two-phase coexistence type positive active material PM in a positive electrode plate 130 includes an overcharge step S7 for charging the lithium ion secondary batteries to bring their SOC (State of Charge) SC into an overcharge SOC not higher than 100% but higher than a target SOC, a return discharge step S8 for discharging, after the overcharge step, the lithium ion secondary batteries to make their SOC equal to the target SOC, and a maintaining step S10.