摘要:
The present invention provides a gel electrolyte cell including a non-aqueous electrolytic solution containing lithium-containing electrolyte salt solved in a non-aqueous solvent and made into a gel state by a matrix polymer, and the gel electrolyte contains vinylene carbonate or derivative thereof in the amount not less than 0.05 wt % and not greater than 5 wt %. This gel electrolyte exhibits an excellent chemical stability with the negative electrode, strength, and liquid-retention characteristic. This gel electrolyte enables to obtain a gel electrolyte cell satisfying the cell capacity, cycle characteristic, load characteristic, and low-temperature characteristic.
摘要:
A nonaqueous-electrolyte battery that includes a unit cell and a battery case that encloses the units. The battery case includes a laminate film that sealingly encloses the units by heat welding at least a portion of the laminate film. Upon heat welding, the unit cell further includes a number of electrode terminal leads in which a portion of the electrical terminal leads extend from the battery case. A sealant layer is further applied to at least a portion of the electrodeterminal leads so as to contact the battery case upon heat welding in order to further seal the case and to further prevent short circuiting of the nonaqueous-electrolyte battery.
摘要:
Disclosed is a nonaqueous electrolyte battery including a battery element contained in an outer covering member composed of a laminated film and sealed therein by heat seal, and a gas absorbable material interposed between the outermost layer of the outer covering member and the battery element. Such a battery is advantageous in that even if gas occurs in the battery element, the laminated film as the outer covering member is prevented from being swelled.
摘要:
A nonaqueous electrolyte battery that includes a unit cell and a battery case that encloses the unit cell. The battery case includes a laminate film that encloses the unit cells by heat welding at least a portion of the laminate film. Upon heat welding, the unit cell further includes a number of electrode terminal leads in which a portion of the electrical terminal leads extend from the battery case. A sealant layer is further applied to at least a portion of the electrode terminal leads so as to contact the battery case upon heat welding in order to further seal the case and to further prevent short circuiting of the nonaqueous-electrolyte battery.
摘要:
A nonaqueous-electrolyte battery which is capable of preventing introduction of water and deterioration in the capacity thereof is disclosed. The nonaqueous-electrolyte battery according to the present invention incorporates a case constituted by laminated films; and a unit cell which is accommodated in the case and having a structure that the peripheries of the case is sealed with heat, wherein when an assumption is made that the quantity of water capable of penetrating a heat-weld resin layer which is the innermost layer of the case having a thickness of T (μm) is R (g/m2·day), the cross sectional area of resin in a heat-sealed portion is S (cm2), an average width of the heat-sealed portion is W (cm) and the capacity of the unit cell is C (Wh), the following relationship is satisfied: (T×R×S)/(W×C)≦0.96 μg/Wh·day. When the foregoing structure is employed, water introducing rate can be reduced to 350 μg/year or lower per capacity (Wh).
摘要:
It is an object to quickly disperse heat generated when short circuit occurs between a positive electrode and a negative electrode. A nonaqueous-electrolyte battery is disclosed which incorporates: an encapsulating medium constituted by a laminated film in which a unit cell is accommodated, wherein the laminated film of the encapsulating medium contains a metal material having a heat conductivity k at room temperatures which is 230 Wm−1K−1 or higher. Moreover, ratio R of the volume of the metal material portion of the encapsulating medium with respect to a capacity of 1 mAh of the unit cell is 0.0002 cm3/mAh≦R≦0.003 cm3/mAh.
摘要翻译:本发明的目的是快速分散在正极和负极之间发生短路时产生的热量。 公开了一种非水电解质电池,其包括:由容纳单元电池的层叠膜构成的封装介质,其中,所述封装介质的层叠膜含有室温下的导热系数k为230Wm的金属材料 -1K-1以上。 此外,封装介质的金属材料部分的体积相对于单电池的1mAh的容量的比率R为0.0002cm 3 / mAh <= R = 0.003cm 3 / mAh。
摘要:
A nonaqueous electrolyte battery is disclosed which has an improved volume energy density and satisfactory impact resistance, a heat radiating characteristic and producibility. The battery element is accommodated in a casing constituted by a laminate film so as to be sealed by welding. Electrode-terminal leads electrically conducted to electrodes which constitute the battery element are sandwiched by welded portions so as to be exposed to the outside portion of the casing. A control circuit of the battery is mounted on a welded portion of the casing. Since the control circuit of the battery is mounted on the welded portion of the casing, the space in the battery in which the battery element is not present can effectively be used. Therefore, the volume efficiency can considerably be improved.
摘要:
Provided is a battery capable of preventing the entry of water even if a sealing width is reduced. A battery element comprising a cathode and an anode is accommodated in a film-shaped casing. The casing includes a metal layer, a resin layer disposed on a side of the metal layer closer to the battery element with an adhesive layer in between, and a resin layer disposed on a side of the metal layer opposite to the side where the resin layer is formed with an adhesive layer in between. The adhesive layer has a water vapor transmission rate of 800 g/m2·day or less for a thickness of 25 μm at 40° C. and 90% RH and a thickness of 10 μm or less. Thereby, even if the sealing width is reduced, the entry of water into the battery can be prevented.
摘要翻译:提供即使密封宽度减小也能够防止水进入的电池。 包括阴极和阳极的电池元件容纳在膜状壳体中。 壳体包括金属层,设置在金属层的更靠近电池元件的侧面上的粘合剂层的树脂层和设置在金属层的与树脂层的一侧相反侧的树脂层 在其间形成有粘合剂层。 粘合剂层在40℃,90%RH和10mum以下的厚度为25μm的水蒸气透过率为800g / m 2·天以下。 因此,即使密封宽度减小,也可以防止水进入电池。
摘要:
A biofuel cell has a structure in which a cathode and an anode are opposed to each other with a electrolyte layer provided therebetween, at least one of the cathode and the anode including an electrode on which at least one enzyme and at least one electron mediator are immobilized. The concentration of the electron mediator immobilized on the electrode is at least 10 times a Michaelis constant Km of the electron mediator for the enzyme, which is determined by measurement in a solution.
摘要:
A fuel cell which utilizes the biogenic metabolism to produce a high current density is provided. The fuel cell generates electric power in such a way that the fuel is decomposed stepwise by a plurality of enzymes and those electrons formed by oxidation are transferred to the electrode. The enzymes work such that the enzyme activity of the enzyme involved in decomposition in the early stage is smaller than the sum of the enzyme activities of the enzymes involved in decomposition in the later stage. In the case where a coenzyme is involved, the enzyme activity of the oxidase that oxidizes the coenzyme is greater than the sum of the enzyme activities of the enzymes involved in the formation of the reduced form of the coenzyme, out of the enzymes involved in the stepwise decomposition of the fuel.