摘要:
A substrate treating apparatus is provided for eliminating wasteful consumption of a treating solution in a treating mode in which the treating solution is delivered in a strip form to a substrate from a treating solution delivery nozzle sweeping over the substrate. In a first aspect of the invention, collecting vessels are arranged around a developing cup surrounding a wafer supported by a wafer holder. The collecting vessels collect part of a developer delivered from a discharge opening of a developer delivery nozzle outwardly of a surface of the wafer. In a second aspect of the invention, collecting vessels are arranged below a developer delivery nozzle, with collecting openings of the collecting vessels opposed to a discharge opening or openings of the delivery nozzle. The collecting vessels are moved longitudinally of the discharge openings according to a position of the developer delivery nozzle relative to the wafer.
摘要:
A controller is connected to a substrate processing apparatus and an exposure apparatus. A pilot substrate subjected to a series of processing as preprocessing is transported to an inspection unit. An inspection result determination part compares inspection results received from the inspection unit with substrate condition data so that a condition change instruction part changes the processing condition of each processing unit when no requirement is satisfied. This operation is so repeated that a processing control part executes actual processing according to recipe data when the inspection results satisfy the requirement. Thus, the efficiency a step of changing the processing condition of each processing part in response to the inspection results in the inspection part is improved in preprocessing executed in the substrate processing apparatus.
摘要:
A substrate spin treating method and apparatus having a cup cleaner device for cleaning a scatter preventive cup, which cleaner device does not require attaching and/or detaching of a cleaning jig. The cleaner device is driven through engagement with a spin chuck which operates at a low torque that is provided for normal substrate spin treating operation. During the normal spin treating operation, only the spin chuck is driven by a rotary shaft, with the cup cleaner device being disengaged from the spin chuck and its driving rotary shaft. For a cup cleaning operation, the spin chuck and scatter preventive cup are vertically moved relative to each other to place the cup cleaner device at a cup cleaning height and to drivingly connect the cup cleaner device to the rotary shaft through a torque transmitter. In this state, the cup cleaner device is rotated to establish a centrifugal force that scatters a cleaning solution supplied to a cleaning solution guide of the cup cleaner device from cleaning solution supply nozzles, thereby cleaning inner surfaces of the scatter preventive cup.
摘要:
A joint nozzle that delivers a developer, a rinsing liquid and nitrogen gas is disposed adjacent the spin center of a substrate in plan view. A controller operates electromagnetic switch valves to continue supply of the developer, while spinning the substrate, in a developing process, and to start supply of the rinsing liquid in a rinsing process, immediately after the supply of the developer ends, thereby achieving a shortened period of the developing process. A switching is made to a drying process by starting supply of the nitrogen gas immediately after completion of the rinsing process. Thus, even if the substrate has a large angle of contact, formation of droplets of the rinsing liquid is inhibited to prevent post-develop defects.
摘要:
A substrate treating apparatus disclosed herein realizes improved throughput. The substrate treating apparatus according to this invention includes an antireflection film forming block, a resist film forming block and a developing block arranged in juxtaposition. Each block includes chemical treating modules, heat-treating modules and a single main transport mechanism. The main transport mechanism transports substrates within each block. Transfer of the substrates between adjacent blocks is carried out through substrate rests. The main transport mechanism of each block is not affected by movement of the main transport mechanisms of the adjoining blocks. Consequently, the substrates may be transported efficiently to improve the throughput of the substrate treating apparatus.
摘要:
A joint nozzle that delivers a developer, a rinsing liquid and nitrogen gas is disposed adjacent the spin center of a substrate in plan view. A controller operates electromagnetic switch valves to continue supply of the developer, while spinning the substrate, in a developing process, and to start supply of the rinsing liquid in a rinsing process, immediately after the supply of the developer ends, thereby achieving a shortened period of the developing process. A switching is made to a drying process by starting supply of the nitrogen gas immediately after completion of the rinsing process. Thus, even if the substrate has a large angle of contact, formation of droplets of the rinsing liquid is inhibited to prevent post-develop defects.
摘要:
A series of substrate transport paths for transporting substrates is arranged on upper and lower stories. Substrates are transferable between the substrate transport path on the first story and the substrate transport path on the second story. The paths include a going-only path for transporting the substrates forward, and a return-only path for transporting the substrates in the opposite direction, these paths being arranged on the upper and lower stories. An indexer connects one end of the substrate transport path on one story to one end of the substrate transport path on the other story. An interface connects the other end of the substrate transport path on one story to the other end of the substrate transport path on the other story. This construction efficiently reduces a waiting time due to interference between the substrates transported along the going-only path and the substrates transported along the return-only path.
摘要:
A joint nozzle that delivers a developer, a rinsing liquid and nitrogen gas is disposed adjacent the spin center of a substrate in plan view. A controller operates electromagnetic switch valves to continue supply of the developer, while spinning the substrate, in a developing process, and to start supply of the rinsing liquid in a rinsing process, immediately after the supply of the developer ends, thereby achieving a shortened period of the developing process. A switching is made to a drying process by starting supply of the nitrogen gas immediately after completion of the rinsing process. Thus, even if the substrate has a large angle of contact, formation of droplets of the rinsing liquid is inhibited to prevent post-develop defects.
摘要:
A substrate processing apparatus includes a coating section, a developing section, a heat-treating section and a transport mechanism. The coating section has first processing units each for performing a coverage process to supply a photoresist solution to a substrate and cover a surface of the substrate with the photoresist solution, a second processing unit for spinning the substrate, after the coverage process, at high speed to make the photoresist solution into a film, dry the photoresist film, and clean the substrate. All substrates are processed with the same coating conditions to suppress differences in quality among the substrates. The first and second processing units perform the respective processes concurrently to improve the throughput of substrate processing.
摘要:
A substrate spin coating apparatus for forming a coating film on the upper surface of a spinning substrate includes a spin chuck for supporting and spinning the substrate while holding same substantially in horizontal posture. A scatter preventive cup surrounds lateral and lower regions of the spin chuck, and defines an opening in an upper central region thereof for allowing entry of air flows. An exhaust vent is provided for downwardly exhausting the air flows, and a nozzle is provided for supplying a coating solution through the opening of the scatter preventive cup to the upper surface of the substrate. The scatter preventive cup includes an air passage formed in a bottom region thereof and opening toward a lower surface of the substrate. An air flow adjusting unit is connected to the air passage for adjusting an air flow to a predetermined temperature and supplying the adjusted air flow to the air passage.