摘要:
The amount of RF power supplied to a plasma in a vacuum plasma processing chamber is gradually changed on a preprogrammed basis in response to signals stored in a computer memory. The computer memory stores signals so that other processing chamber parameters (pressure, gas species and gas flow rates) remain constant while the gradual change occurs. The stored signals enable rounded corners, instead of sharp edges, to be etched, e.g., at an intersection of a trench wall and base.
摘要:
The amount of RF power supplied to a plasma in a vacuum plasma processing chamber is gradually changed on a preprogrammed basis in response to signals stored in a computer memory. The computer memory stores signals so that other processing chamber parameters (pressure, gas species and gas flow rates) remain constant while the gradual change occurs. The stored signals enable rounded corners, instead of sharp edges, to be etched, e.g., at an intersection of a trench wall and base.
摘要:
A method for determining an endpoint for etching a layer includes steps of estimating the etch endpoint and, during etch, directing radiant energy at two or more wavelengths onto the layer to be etched, detecting the last intensity maximum reflected at a first wavelength prior to the estimated etch endpoint, and detecting the intensity maximum reflected at a second wavelength first occurring after the last intensity maximum at the first wavelength. Also, a method for determining an endpoint for etching a layer having an approximate initial thickness by steps of, during etch, directing radiant energy at three or more wavelengths onto the layer to be etched; selecting first, second, and third wavelengths; approximating an etch rate from the time interval between a first detected intensity minimum and an adjacent intensity maximum reflected at the third wavelength, estimating an etch endpoint from the approximate initial thickness of the layer and the approximate etch rate; detecting the last intensity maximum reflected at the first wavelength prior to the estimated etch endpoint; and detecting the intensity maximum reflected at the second wavelength first occurring after the last intensity maximum at the first wavelength. The material making up the layer is at least partly transparent to both the first and the second wavelength. The first wavelength is longer than both the second wavelength and the third wavelength. In some embodiments the third wavelength is longer than the second wavelength. The endpoint is at the point of intensity maximum of the second wavelength or is at a point following an interval thereafter.
摘要:
A semiconductor manufacturing process wherein an organic antireflective coating is etched with an O2-free sulfur containing gas which provides selectivity with respect to an underlying layer and/or minimizes the lateral etch rate of an overlying photoresist to maintain critical dimensions defined by the photoresist. The etchant gas can include SO2 and a carrier gas such as Ar or He and optional additions of other gases such as HBr. The process is useful for etching 0.25 micron and smaller contact or via openings in forming structures such as damascene structures.
摘要:
A process for etching a substrate 25 in an etching chamber 30, and simultaneously cleaning a thin, non-homogeneous, etch residue deposited on the surfaces of the walls 45 and components of the etching chamber 30. In the etching step, process gas comprising etchant gas is used to etch a substrate 25 in the etching chamber 30 thereby depositing etch residue inside the chamber 30. Cleaning gas is added to the process gas for a sufficient time and in a volumetric flow ratio that is sufficiently high, to react with and remove substantially all the etch residue deposited by the process gas. The present method advantageously cleans the etch residue in the chamber 30, during the etching process, and without use of separate cleaning, conditioning, and seasoning process steps.
摘要:
An etchant composition of nitrogen trifluoride and chlorine, preferably also including a passivation material such as hydrogen bromide, etches tungsten silicide-polysilicon gate layers with high selectivity to a thin underlying silicon oxide gate oxide layer to form straight wall, perpendicular profiles with low microloading and excellent profile control.
摘要:
An electrostatic chuck 75 for holding a substrate 25 in a process chamber 20, comprises an electrostatic member 80 including an insulator having an electrode 95 therein and a receiving surface for receiving the substrate. A base 85 supports the electrostatic member, the base having a first thermal resistance R.sub.B and having a lower surface that rests on the process chamber. A thermal transfer regulator pad 100 is positioned between the receiving surface of the electrostatic member and the lower surface of the base, the thermal pad comprising a second thermal resistance R.sub.P that is sufficiently higher or lower than the thermal resistance R.sub.B of the base, to provide a predetermined temperature profile across a processing surface of the substrate during processing in the chamber.
摘要:
Apparatus for measuring wafer support pedestal temperature in a semiconductor wafer processing system. The apparatus measures infrared energy emitted by the bottom of the pedestal via a tube having one end inserted in a bore through the underside of the cathode pedestal base. The distal end of the tube is coupled to a temperature sensor. Both the tube and temperature sensor are fitted with insulating sleeve adapters to suppress unwanted RF signals from coupling to the sensor.
摘要:
A process for etching a substrate 25 in an etching chamber 30, and simultaneously cleaning a thin, non-homogeneous, etch residue deposited on the surfaces of the walls 45 and components of the etching chamber 30. In the etching step, process gas comprising etchant gas is used to etch a substrate 25 in the etching chamber 30 thereby depositing etch residue inside the chamber 30. Cleaning gas is added to the process gas for a sufficient time and in a volumetric flow ratio that is sufficiently high, to react with and remove substantially all the etch residue deposited by the process gas. The present method advantageously cleans the etch residue in the chamber 30, during the etching process, and without use of separate cleaning, conditioning, and seasoning process steps.