Porous electrodes for spectroelectrochemistry and x-ray structure analyses

    公开(公告)号:US10273593B2

    公开(公告)日:2019-04-30

    申请号:US15221167

    申请日:2016-07-27

    Abstract: An electrochemical cell that allows for in-situ structural characterization of amorphous thin film materials during the course of electrolysis using high-energy X-ray scattering (>50 keV). The compact and versatile cell employs a three-electrode configuration and minimizes X-ray scattering contributions from the cell, reference and counter electrodes, as well as the working electrode support. A large surface area working electrode has a physically robust support and is largely transparent to X-rays. This design, which utilizes a three-dimensional working electrode, also greatly improves the intensity and quality of the scattered signal compared to a two-dimensional working electrode. The in-situ cell can be used not only to investigate structural evolution during electrolysis using X-ray scattering (e.g. pair distribution function), but also to perform electrochemical potential-dependent structural analysis by extended X-ray absorption fine structure.

    POROUS ELECTRODES FOR SPECTROELECTROCHEMISTRY AND X-RAY STRUCTURE ANALYSES

    公开(公告)号:US20180031496A1

    公开(公告)日:2018-02-01

    申请号:US15221167

    申请日:2016-07-27

    Abstract: An electrochemical cell that allows for in-situ structural characterization of amorphous thin film materials during the course of electrolysis using high-energy X-ray scattering (>50 keV). The compact and versatile cell, fabricated using a 3D printer, employs a three-electrode configuration and minimizes X-ray scattering contributions from the cell, reference and counter electrodes, as well as the working electrode support. A large surface area working electrode has a physically robust support and is largely transparent to X-rays. This design, which utilizes a three-dimensional working electrode, also greatly improves the intensity and quality of the scattered signal compared to a two-dimensional working electrode. The in-situ cell can be used not only to investigate structural evolution during electrolysis using X-ray scattering (e.g. pair distribution function), but also to perform electrochemical potential-dependent structural analysis by extended X-ray absorption fine structure. The in-situ electrochemical cell opens new opportunity to characterize amorphous thin films thinner than 70 nm.

Patent Agency Ranking