Abstract:
A method of fabricating a spatial semiconductor structure includes steps as follows. Firstly, a semiconductor substrate is provided. Then, a first mask layer is formed above the semiconductor substrate. Then, at least a first opening is formed in the first mask layer and exposes a portion of a surface of the semiconductor substrate. Then, a first semiconductor pattern is formed in the first opening. Then, a second mask layer is formed over the first semiconductor pattern and the first mask layer. Then, at least a second opening is formed through the second mask layer to the first mask layer and exposes another portion of the surface of the semiconductor substrate. And, a second semiconductor pattern is formed in the second opening.
Abstract:
A method of fabricating a spatial semiconductor structure includes steps as follows. Firstly, a semiconductor substrate is provided. Then, a first mask layer is formed above the semiconductor substrate. Then, at least a first opening is formed in the first mask layer and exposes a portion of a surface of the semiconductor substrate. Then, a first semiconductor pattern is formed in the first opening. Then, a second mask layer is formed over the first semiconductor pattern and the first mask layer. Then, at least a second opening is formed through the second mask layer to the first mask layer and exposes another portion of the surface of the semiconductor substrate. And, a second semiconductor pattern is formed in the second opening.
Abstract:
A method of fabricating a spatial semiconductor structure includes steps as follows. Firstly, a semiconductor substrate is provided. Then, a first mask layer is formed above the semiconductor substrate. Then, at least a first opening is formed in the first mask layer and exposes a portion of a surface of the semiconductor substrate. Then, a first semiconductor pattern is formed in the first opening. Then, a second mask layer is formed over the first semiconductor pattern and the first mask layer. Then, at least a second opening is formed through the second mask layer to the first mask layer and exposes another portion of the surface of the semiconductor substrate. And, a second semiconductor pattern is formed in the second opening.
Abstract:
A method of fabricating semiconductor patterns includes steps as follows: Firstly, a substrate is provided and has at least a first semiconductor pattern and at least a second semiconductor pattern, wherein a line width of the first semiconductor pattern is identical to a line width of the second semiconductor pattern. Then, a barrier pattern is formed over a surface of the first semiconductor pattern, and the second semiconductor pattern is exposed. Then, a surface portion of the second semiconductor pattern is reacted to form a sacrificial structure layer. Then, the barrier pattern and the sacrificial structure layer are removed, and the line width of the second semiconductor pattern is shrunken to be less than the line width of the first semiconductor pattern. A third semiconductor pattern having a line width can be further provided.
Abstract:
A fin field-effect transistor structure comprises a substrate, a fin channel, a source/drain region, a high-k metal gate and a plurality of slot contact structures. The fin channel is formed on the substrate. The source/drain region is formed in the fin channel. The high-k metal gate formed on the substrate and the fin channel comprises a high-k dielectric layer and a metal gate layer, wherein the high-k dielectric layer is arranged between the metal gate layer and the fin channel. The slot contact structures are disposed at both sides of the metal gate.
Abstract:
A method of fabricating semiconductor patterns includes steps as follows: Firstly, a substrate is provided and has at least a first semiconductor pattern and at least a second semiconductor pattern, wherein a line width of the first semiconductor pattern is identical to a line width of the second semiconductor pattern. Then, a barrier pattern is formed over a surface of the first semiconductor pattern, and the second semiconductor pattern is exposed. Then, a surface portion of the second semiconductor pattern is reacted to form a sacrificial structure layer. Then, the barrier pattern and the sacrificial structure layer are removed, and the line width of the second semiconductor pattern is shrunken to be less than the line width of the first semiconductor pattern. A third semiconductor pattern having a line width can be further provided.
Abstract:
A fin field-effect transistor structure includes a substrate, a fin channel and a high-k metal gate. The high-k metal gate is formed on the substrate and the fin channel. A process of manufacturing the fin field-effect transistor structure includes the following steps. Firstly, a polysilicon pseudo gate structure is formed on the substrate and a surface of the fin channel. By using the polysilicon pseudo gate structure as a mask, a source/drain region is formed in the fin channel. After the polysilicon pseudo gate structure is removed, a high-k dielectric layer and a metal gate layer are successively formed. Afterwards, a planarization process is performed on the substrate having the metal gate layer until the first dielectric layer is exposed, so that a high-k metal gate is produced.