Abstract:
The present invention comprises methods, systems and compositions comprising cell culture analog systems, comprising components which optionally comprise biologically functional cells, and the components and systems function similarly to in vivo conditions.
Abstract:
The invention provides a nutrient medium composition and associated methods for lengthening the useful life of a culture of muscle cells. Disclosed is a method of culturing mammalian muscle cells, including preparing one or more carriers coated with a covalently bonded monolayer of trimethoxy-silylpropyl-diethylenetriamine (DETA); verifying DETA monolayer formation by one or more associated optical parameters; suspending isolated fetal rat skeletal muscle cells in serum-free medium according to medium composition 1; plating the suspended cells onto the prepared carriers at a predetermined density; leaving the carriers undisturbed for cells to adhere to the DETA monolayer; covering the carriers with a mixture of medium 1 and medium 2; and incubating. A cell nutrient medium composition includes Neurobasal, an antibiotic-antimycotic composition, cholesterol, human TNF-alpha, PDGF BB, vasoactive intestinal peptides, insulin-like growth factor 1, NAP, r-Apolipoprotein E2, purified mouse Laminin, beta amyloid, human tenascin-C protein, rr-Sonic hedgehog Shh N-terminal, and rr-Agrin C terminal.
Abstract:
The present invention comprises methods, systems and compositions comprising concentric chamber cell culture analog devices, comprising biologically functional cells, which function similarly to in vivo conditions.
Abstract:
The present invention comprises methods, systems and compositions comprising cell culture analog systems, comprising components which optionally comprise biologically functional cells, and the components and systems function similarly to in vivo conditions.
Abstract:
The present invention comprises methods, systems and compositions comprising cell culture analog systems, comprising components which optionally comprise biologically functional cells, and the components and systems function similarly to in vivo conditions.
Abstract:
The method of culturing cells disclosed herein includes printing cells onto a substrate that includes cell adhesive regions and cell repulsive regions. The cells are suspended in a printing medium to create a cell suspension, and a volume of the cell suspension is loaded into a printer. A cell adhesive region of the substrate is aligned beneath the printing channel of the printer, and droplets of the cell suspension are dispensed from the printing channel directly onto the cell adhesive region. Contact of the dispensed droplets with cell repulsive regions of the substrate is limited, either by targeting of the droplets to the cell adhesive regions, by repulsions generated by the cell repulsive areas, or both. The cells adhere to the cell adhesive regions to create a cell pattern, and are maintained thereafter in a physiologically suitable environment.
Abstract:
The method of culturing cells disclosed herein includes printing cells onto a substrate that includes cell adhesive regions and cell repulsive regions. The cells are suspended in a printing medium to create a cell suspension, and a volume of the cell suspension is loaded into a printer. A cell adhesive region of the substrate is aligned beneath the printing channel of the printer, and droplets of the cell suspension are dispensed from the printing channel directly onto the cell adhesive region. Contact of the dispensed droplets with cell repulsive regions of the substrate is limited, either by targeting of the droplets to the cell adhesive regions, by repulsions generated by the cell repulsive areas, or both. The cells adhere to the cell adhesive regions to create a cell pattern, and are maintained thereafter in a physiologically suitable environment.
Abstract:
The invention provides a nutrient medium composition and associated methods for lengthening the useful life of a culture of muscle cells. Disclosed is a method of culturing mammalian muscle cells, including preparing one or more carriers coated with a covalently bonded monolayer of trimethoxy-silylpropyl-diethylenetriamine (DETA); verifying DETA monolayer formation by one or more associated optical parameters; suspending isolated fetal rat skeletal muscle cells in serum-free medium according to medium composition 1; plating the suspended cells onto the prepared carriers at a predetermined density; leaving the carriers undisturbed for cells to adhere to the DETA monolayer; covering the carriers with a mixture of medium 1 and medium 2; and incubating. A cell nutrient medium composition includes Neurobasal, an antibiotic-antimycotic composition, cholesterol, human TNF-alpha, PDGF BB, vasoactive intestinal peptides, insulin-like growth factor 1, NAP, r-Apolipoprotein E2, purified mouse Laminin, beta amyloid, human tenascin-C protein, rr-Sonic hedgehog Shh N-terminal, and rr-Agrin C terminal.
Abstract:
Disclosed herein are methods of differentiating human neural progenitor cells to nociceptor-like cells. Also disclosed are methods of making an innervated skin-like construct using nociceptor-like cells differentiated from human neural progenitor cells. Also disclosed are engineered constructs for screening potentially therapeutic compounds that include a skin-like construct and nociceptor-like cells differentiated from human neural progenitor cells. Also disclosed is a method of screening potential therapies.