Abstract:
A method and apparatus for disinfecting and/or self-sterilizing at least a portion of the surface of a stethoscope is provided. Methods and devices are provided by which a device or apparatus can generate a sterilizing plasma such that a stethoscope, or portion of a stethoscope, can be placed within or near the device or apparatus so that the plasma disinfects and/or sterilizes and/or decontaminates at least a portion of the stethoscope. A method and apparatus are disclosed for providing a self-disinfecting and/or self-sterilizing and/or self-decontaminating stethoscope and stethoscope disinfecting and/or sterilization apparatus for disinfecting and/or sterilizing, respectively, all or at least a portion of a stethoscope.
Abstract:
An electromagnetic radiation activated device comprises a property changing material and at least one functionalized fullerene that upon irradiation of the functionalized fullerenes with electromagnetic radiation of one or more frequencies a thermally activated chemical or physical transformation occurs in the property changing material. The thermal activated transformation of the property changing material is triggered by the heating or combustion of the functionalized fullerenes upon their irradiation. The device can include a chemical agent that is embedded in the property changing material and is released when the material is heated by the functionalized fullerenes upon irradiation.
Abstract:
The subject invention concerns nanorods, compositions and substrates comprising nanorods, and methods of making and using nanorods and nanorod compositions and substrates. In one embodiment, the nanorod is composed of Zinc oxide (ZnO). In a further embodiment, a nanorod of the invention further comprises SiO2 or TiO2. In a specific embodiment, a nanorod of the invention is composed of ZnO coated with SiO2. Nanorods of the present invention are useful as an adhesion-resistant biomaterial capable of reducing viability in anchorage-dependent cells.