Abstract:
A catalyst composite and a process for preparing the catalyst composite are described. The catalyst composite includes a microporous material having a gallium component dispersed thereon; and a hydroxy metal oxide binder, where the metal is zirconium, titanium, or a mixture thereof. The process includes mixing a gelling agent, water, and the hydroxy metal oxide binder precursor to form a solution. The solution is combined with a microporous material to form a slurry, and the slurry is formed into a shaped article. The article is dried to convert the hydroxy metal oxide binder precursor into a hydroxy metal oxide binder and form the catalyst composite.
Abstract:
A hydroprocessing catalyst with improved performance has been produced that involves an intimately mixed unsupported metal oxide with a zeolite or other acid function. The intimate mixing allows an intimate interaction between the unsupported metal oxide and the acid function. The hydroprocessing catalyst may be used alone or may be incorporated with a portion of a conventional hydrocracking catalyst.
Abstract:
A catalyst composition comprising a support comprising a mixture of amorphous silica-alumina and non-zeolitic alumina comprising no more than 75 wt % amorphous silica-alumina and having a ratio of moles of silicon to moles of aluminum in the range of about 0.05 to about 0.50. A first hydrogenation metal comprising platinum, a second hydrogenation metal from Group VIIB or Group VIII of the Periodic Table other than platinum and an optional third metal from Group IA of the Periodic Table may be deposited on the support. The ratio of moles of silicon to the moles of the first hydrogenation metal, the second hydrogenation metal and the optional third metal on the support may be between about 15 and about 75.
Abstract:
A composition, process and apparatuses for removal of one or more contaminant anions from water are provided. In an embodiment, the process includes treating the water with a composition comprising a layered metal hydroxy salt, wherein the layered metal hydroxy salt is a compound comprising (a) a metal (b) a framework hydroxide, and (c) a replaceable anion.
Abstract:
A composition, process and apparatuses for removal of one or more contaminant anions from water are provided. In an embodiment, the process includes treating the water with a composition comprising a layered metal hydroxy salt, wherein the layered metal hydroxy salt is a compound comprising (a) a metal (b) a framework hydroxide, and (c) a replaceable anion.
Abstract:
Aluminas with increased surface acidity, methods of making the same, and methods for using the same are provided. In an exemplary embodiment, a method for increasing the surface acidity of an alumina material includes providing an alumina starting material, and processing the alumina starting material under hydrothermal conditions in the presence of one or more organic acids to generate a hydrothermally treated alumina. In this embodiment, the one or more organic acids includes a polyprotic organic acid with a pKa value of about 0 to about 10, and the resulting hydrothermally treated alumina has increased surface acidity relative to the alumina starting material.
Abstract:
A hydroprocessing catalyst with improved performance has been produced that involves an intimately mixed unsupported metal oxide with a zeolite or other acid function. The intimate mixing allows an intimate interaction between the unsupported metal oxide and the acid function. The hydroprocessing catalyst may be used alone or may be incorporated with a portion of a conventional hydrocracking catalyst.
Abstract:
A catalyst composition comprising a support comprising a mixture of amorphous silica-alumina and non-zeolitic alumina comprising no more than 75 wt % amorphous silica-alumina and having a ratio of moles of silicon to moles of aluminum in the range of about 0.05 to about 0.50. A first hydrogenation metal comprising platinum, a second hydrogenation metal from Group VIIB or Group VIII of the Periodic Table other than platinum and an optional third metal from Group IA of the Periodic Table may be deposited on the support. The ratio of moles of silicon to the moles of the first hydrogenation metal, the second hydrogenation metal and the optional third metal on the support may be between about 15 and about 75.