摘要:
The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.
摘要:
A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li7La3Zr2O12 (LLZO). The lithium ion conducting sulfide composition can be β-Li3PS4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.
摘要翻译:用于锂硫电池的固体电解质包括嵌入锂离子导电硫化物组合物中的锂离子传导氧化物组合物的颗粒。 锂离子传导性氧化物组合物可以是Li 7 La 3 Zr 2 O 12(LLZO)。 锂离子导电硫化物组合物可以是-Li3PS4(LPS)。 还公开了一种锂离子电池和制备用于锂离子电池的固体电解质的方法。
摘要:
The invention is directed to a method for producing metal-containing particles, the method comprising subjecting an aqueous solution comprising a metal salt, Eh, lowering reducing agent, pH adjusting agent, and water to conditions that maintain the Eh value of the solution within the bounds of an Eh-pH stability field corresponding to the composition of the metal-containing particles to be produced, and producing said metal-containing particles in said aqueous solution at a selected Eh value within the bounds of said Eh-pH stability field. The invention is also directed to the resulting metal-containing particles as well as devices in which they are incorporated.
摘要:
The invention is directed to a method for producing metal oxide particles, the method comprising subjecting non-oxide metal-containing particles to an oxidation step that converts the non-oxide metal-containing particles to said metal oxide particles. The invention is also directed to the resulting metal oxide compositions. In particular embodiments, non-oxide precursor particles are produced by microbial means, and the produced non-oxide precursor particles subjected to oxidation conditions under elevated temperature conditions (e.g., by a thermal pulse) to produce metal oxide particles or a metal oxide film.
摘要:
A solid electrolyte for a lithium-sulfur battery includes particles of a lithium ion conducting oxide composition embedded within a lithium ion conducting sulfide composition. The lithium ion conducting oxide composition can be Li7La3Zr2O12 (LLZO). The lithium ion conducting sulfide composition can be β-Li3PS4 (LPS). A lithium ion battery and a method of making a solid electrolyte for a lithium ion battery are also disclosed.
摘要翻译:用于锂硫电池的固体电解质包括嵌入锂离子导电硫化物组合物中的锂离子传导氧化物组合物的颗粒。 锂离子传导性氧化物组合物可以是Li 7 La 3 Zr 2 O 12(LLZO)。 锂离子传导性硫化物组合物可以是β-Li 3 PS 4(LPS)。 还公开了一种锂离子电池和制备用于锂离子电池的固体电解质的方法。
摘要:
The invention is directed to a method for producing metal-containing (e.g., non-oxide, oxide, or elemental) nano-objects, which may be nanoparticles or nanowires, the method comprising contacting an aqueous solution comprising a metal salt and water with an electrically powered electrode to form said metal-containing nano-objects dislodged from the electrode, wherein said electrode possesses a nanotextured surface that functions to confine the particle growth process to form said metal-containing nano-objects. The invention is also directed to the resulting metal-containing compositions as well as devices in which they are incorporated.
摘要:
The invention is directed to a method for producing non-oxide semiconductor nanoparticles, the method comprising: (a) subjecting a combination of reaction components to conditions conducive to microbially-mediated formation of non-oxide semiconductor nanoparticles, wherein said combination of reaction components comprises i) anaerobic microbes, ii) a culture medium suitable for sustaining said anaerobic microbes, iii) a metal component comprising at least one type of metal ion, iv) a non-metal component comprising at least one non-metal selected from the group consisting of S, Se, Te, and As, and v) one or more electron donors that provide donatable electrons to said anaerobic microbes during consumption of the electron donor by said anaerobic microbes; and (b) isolating said non-oxide semiconductor nanoparticles, which contain at least one of said metal ions and at least one of said non-metals. The invention is also directed to non-oxide semiconductor nanoparticle compositions produced as above and having distinctive properties.
摘要:
The invention is directed to a method for producing metal-containing particles, the method comprising subjecting an aqueous solution comprising a metal salt, Eh, lowering reducing agent, pH adjusting agent, and water to conditions that maintain the Eh value of the solution within the bounds of an Eh-pH stability field corresponding to the composition of the metal-containing particles to be produced, and producing said metal-containing particles in said aqueous solution at a selected Eh value within the bounds of said Eh-pH stability field. The invention is also directed to the resulting metal-containing particles as well as devices in which they are incorporated.
摘要:
The invention is directed to a method for producing metal-containing (e.g., non-oxide, oxide, or elemental) nano-objects, which may be nanoparticles or nanowires, the method comprising contacting an aqueous solution comprising a metal salt and water with an electrically powered electrode to form said metal-containing nano-objects dislodged from the electrode, wherein said electrode possesses a nanotextured surface that functions to confine the particle growth process to form said metal-containing nano-objects. The invention is also directed to the resulting metal-containing compositions as well as devices in which they are incorporated.