Abstract:
Various examples are provided related to synthesis of single wall carbon nanotubes (SWNTs). In one example, a method includes providing a vapor including a metal catalyst, silicon at a level of about 10 at % of the metal catalyst with balance carbon; synthesizing single wall carbon nanotubes (SWNTs) from the vapor; and collecting the synthesized SWNTs. The vapor including the metal catalyst, silicon and carbon can be provided in a variety of ways. Synthesis of the SWNTs can be an oxygen free synthesis.
Abstract:
Disclosed herein are various layered, carbon-containing materials for use in reducing carbon dioxide. In certain embodiments, the materials comprise single wall carbon nanotubes (SWNTs).
Abstract:
Various aspects of tunable barrier transistors that can be used in high power electronics are provided. In one example, among others, a tunable barrier transistor includes an inorganic semiconducting layer; a source electrode including a nano-carbon film disposed on the inorganic semiconducting layer; a gate dielectric layer disposed on the nano-carbon film; and a gate electrode disposed on the gate dielectric layer over at least a portion of the nano-carbon film. The nano-carbon film can form a source-channel interface with the inorganic semiconducting layer. A gate field produced by the gate electrode can modulate a barrier height at the source-channel interface. The gate field may also modulate a barrier width at the source-channel interface.
Abstract:
An electrode comprises an acid treated, cathodically cycled carbon-comprising film or body. The carbon consists of single walled nanotubes (SWNTs), pyrolytic graphite, microcrystalline graphitic, any carbon that consists of more than 99% sp2 hybridized carbons, or any combination thereof. The electrode can be used in an electrochemical device functioning as an electrolyser for evolution of hydrogen or as a fuel cell for oxidation of hydrogen. The electrochemical device can be coupled as a secondary energy generator into a system with a primary energy generator that naturally undergoes generation fluctuations. During periods of high energy output, the primary source can power the electrochemical device to store energy as hydrogen, which can be consumed to generate electricity as the secondary source during low energy output by the primary source. Solar cells, wind turbines and water turbines can act as the primary energy source.
Abstract:
A degradable polymeric nanotube (NT) dispersant comprises a multiplicity of NT associative groups that are connected to a polymer backbone by a linking group where there are cleavable groups within the polymer backbone and/or the linking groups such that on a directed change of conditions, bond breaking of the cleavable groups results in residues from the degradable polymeric NT dispersant in a manner where the associative groups are uncoupled from other associative groups, rendering the associative groups monomelic in nature. The degradable polymeric nanotube (NT) dispersant can be combined with carbon NTs to form a NT dispersion that can be deposited to form a NT film, or other structure, by air brushing, electrostatic spraying, ultrasonic spraying, ink-jet printing, roll-to-roll coating, or dip coating. The deposition can render a NT film that is of a uniform thickness or is patterned with various thicknesses. Upon deposition of the film, the degradable polymeric nanotube (NT) dispersant can be cleaved and the cleavage residues removed from the film to yield a film where contact between NTs is unencumbered by dispersants, resulting in highly conductive NT films.
Abstract:
A degradable polymeric nanotube (NT) dispersant comprises a multiplicity of NT associative groups that are connected to a polymer backbone by a linking group where there are cleavable groups within the polymer backbone and/or the linking groups such that on a directed change of conditions, bond breaking of the cleavable groups results in residues from the degradable polymeric NT dispersant in a manner where the associative groups are uncoupled from other associative groups, rendering the associative groups monomelic in nature. The degradable polymeric nanotube (NT) dispersant can be combined with carbon NTs to form a NT dispersion that can be deposited to form a NT film, or other structure, by air brushing, electrostatic spraying, ultrasonic spraying, ink-jet printing, roll-to-roll coating, or dip coating. The deposition can render a NT film that is of a uniform thickness or is patterned with various thicknesses. Upon deposition of the film, the degradable polymeric nanotube (NT) dispersant can be cleaved and the cleavage residues removed from the film to yield a film where contact between NTs is unencumbered by dispersants, resulting in highly conductive NT films.
Abstract:
Various examples are provided for brightness compensation in a display. In one example, a method includes identifying an IR voltage drop effect on a pixel supplied by a supply voltage line and generating a brightness signal for the pixel based at least in part on the IR voltage drop effect. In another example, a method includes calculating values of IR voltage drop corresponding to pixels fed by a common supply voltage line and providing a data line signal to each pixel that compensates for the IR voltage drop. In another example, a display device includes a matrix of pixels and a brightness controller configured to determine an IR voltage drop effect on a pixel of the matrix and generate a brightness signal for the pixel based at least in part on the IR voltage drop effect and a temporal average pixel brightness within one refreshing cycle associated with the pixel.
Abstract:
Various examples are provided related to electrical planarization of carbon nanotube thin films or networks. In one example, a method includes depositing one or more thin protective organic and/or inorganic layer across a nanotube film; disrupting electrical conductance of portions of the nanotube film by exposure of out-of-plane nanotubes to a planarization process that disrupts the electrical conductance through the one or more thin protective organic and/or inorganic layer; and removing the one or more thin protective organic and/or inorganic layer from the nanotube film.
Abstract:
Disclosed herein are various layered, carbon-containing materials for use in reducing carbon dioxide. In certain embodiments, the materials comprise single wall carbon nanotubes (SWNTs).
Abstract:
A degradable polymeric nanotube (NT) dispersant comprises a multiplicity of NT associative groups that are connected to a polymer backbone by a linking group where there are cleavable groups within the polymer backbone and/or the linking groups such that on a directed change of conditions, bond breaking of the cleavable groups results in residues from the degradable polymeric NT dispersant in a manner where the associative groups are uncoupled from other associative groups, rendering the associative groups monomelic in nature. The degradable polymeric nanotube (NT) dispersant can be combined with carbon NTs to form a NT dispersion that can be deposited to form a NT film, or other structure, by air brushing, electrostatic spraying, ultrasonic spraying, ink-jet printing, roll-to-roll coating, or dip coating. The deposition can render a NT film that is of a uniform thickness or is patterned with various thicknesses. Upon deposition of the film, the degradable polymeric nanotube (NT) dispersant can be cleaved and the cleavage residues removed from the film to yield a film where contact between NTs is unencumbered by dispersants, resulting in highly conductive NT films.