Abstract:
Described herein is a system to remote-control magnetic actuation of dynamic cell culture. The systems described herein can include a porous, magnetic, elastomeric construct. The porous, magnetic, elastomeric construct can be formed from a composite including a biocompatible elastomer and a population of magnetic particles dispersed within the biocompatible elastomer.
Abstract:
A capture device for capturing a biological substance can include: a substrate; a graphene-oxide layer on the substrate; at least one polydopamine polymer coupled with the graphene-oxide; and at least one targeting receptor coupled to the polydopamine(s), wherein the targeting receptor is capable of targeting/binding with a target biological substance. The graphene-oxide may be covalently coupled with the substrate and polydopamine, and the polydopamine may be covalently coupled with the targeting receptor. The targeting receptor can be an antibody or fragment thereof. The target biological substance can be an exosome. The substrate can be a particle (e.g., magnetic, such as magnetically responsive) or a surface in a microfluidic channel. The surface can be a top surface of a post, the post having a Y-shaped cross-sectional profile. In one aspect, the substrate is a particle. The capture device can include the target biological substance bound to the targeting receptor.
Abstract:
A microfluidic exosome profiling platform integrating exosome isolation and targeted proteomic analysis is disclosed. This platform is capable of quantitative exosomal biomarker profiling directly from 30 μL plasma samples within approximately 100 minutes with markedly enhanced sensitivity and specificity. Identification of distinct subpopulation of patient-derived exosomes is demonstrated by probing surface proteins and multiparameter analyses of intravesicular biomarkers in the selected subpopulation. The expression of IGF-1R and its phosphorylation level in non-small cell lung cancer (NSCLC) patient plasma is assessed, as a non-invasive alternative to the conventional biopsy and immunohistochemistry. The microfluidic chip, which may be fabricated of a glass substrate and a layer of poly(dimethylsiloxane), can include a first capture chamber, a second capture chamber, a serpentine microchannel, a first microchannel, a second microchannel, a sample inlet, a buffer inlet, a bead inlet, at least a first connector channel, and a reagent inlet.
Abstract:
A capture device for capturing a biological substance can include: a substrate; a graphene-oxide layer on the substrate; at least one polydopamine polymer coupled with the graphene-oxide; and at least one targeting receptor coupled to the polydopamine(s), wherein the targeting receptor is capable of targeting/binding with a target biological substance. The graphene-oxide may be covalently coupled with the substrate and polydopamine, and the polydopamine may be covalently coupled with the targeting receptor. The targeting receptor can be an antibody or fragment thereof. The target biological substance can be an exosome. The substrate can be a particle (e.g., magnetic, such as magnetically responsive) or a surface in a microfluidic channel. The surface can be a top surface of a post, the post having a Y-shaped cross-sectional profile. In one aspect, the substrate is a particle. The capture device can include the target biological substance bound to the targeting receptor.
Abstract:
Methods for producing engineered exosomes and other vesicle-like biological targets, including allowing a target vesicle-like structure to react and bind with immunomagnetic particles; capturing the immunomagnetic particle/vesicle complex by applying a magnetic field; further engineering the captured vesicles by surface modifying with additional active moieties or internally loading with active agents; and releasing the engineered vesicle-like structures, such as by photolytically cleaving a linkage between the particle and engineered vesicle-like structures, thereby releasing intact vesicle-like structures which can act as delivery vehicles for therapeutic treatments.
Abstract:
A graphene-based sandwich immunoassay for detecting whether a target biological substance is present in a sample, generally comprising contacting said sample with a plurality of particles coated with graphene nanosheets, each particle having at least one targeting receptor, such that the target biological substance, if present, associates with the targeting receptor, and detecting the presence of the target biological substance in the sample by subsequently contacting the sample with a detection antibody, wherein the detection antibody is capable of targeting and binding with the target biological substance if bound to the targeting receptor to yield a detectable complex. The targeting receptor can be an antibody or fragment thereof. The target biological substance can be an exosome.
Abstract:
A graphene-based sandwich immunoassay for detecting whether a target biological substance is present in a sample, generally comprising contacting said sample with a plurality of particles coated with graphene nanosheets, each particle having at least one targeting receptor, such that the target biological substance, if present, associates with the targeting receptor, and detecting the presence of the target biological substance in the sample by subsequently contacting the sample with a detection antibody, wherein the detection antibody is capable of targeting and binding with the target biological substance if bound to the targeting receptor to yield a detectable complex. The targeting receptor can be an antibody or fragment thereof. The target biological substance can be an exosome.
Abstract:
A microfluidic exosome profiling platform integrating exosome isolation and targeted proteomic analysis is disclosed. This platform is capable of quantitative exosomal biomarker profiling directly from plasma samples with markedly enhanced sensitivity and specificity. Identification of distinct subpopulation of patient-derived exosomes is demonstrated by probing surface proteins and multiparameter analyses of intravesicular biomarkers in the selected subpopulation. The expression of IGF-1R and its phosphorylation level in non-small cell lung cancer (NSCLC) patient plasma is assessed as a non-invasive alternative to the conventional biopsy and immunohistochemistry. Detection of ovarian cancer also is assessed. The microfluidic chip, which may be fabricated of a glass substrate and a layer of poly(dimethylsiloxane), includes a serpentine microchannel to mix a fluid and a microchamber for the collection and detection of exosomes.
Abstract:
Methods for producing engineered exosomes and other vesicle-like biological targets, including allowing a target vesicle-like structure to react and bind with immunomagnetic particles; capturing the immunomagnetic particle/vesicle complex by applying a magnetic field; further engineering the captured vesicles by surface modifying with additional active moieties or internally loading with active agents; and releasing the engineered vesicle-like structures, such as by photolytically cleaving a linkage between the particle and engineered vesicle-like structures, thereby releasing intact vesicle-like structures which can act as delivery vehicles for therapeutic treatments.
Abstract:
The present disclosure provides immunomagnetic compositions and their methods of use, in particular magnetic particles conjugated to peptides that bind and capture extracellular vesicles.