摘要:
An integrated liquidjet system capable of stripping, prepping and coating a part includes a cell defining an enclosure, a jig for holding the part inside the cell, an ultrasonic nozzle having an ultrasonic transducer for generating a pulsed liquidjet, a coating particle source for supplying coating particles to the nozzle, a pressurized liquid source for supplying the nozzle with a pressurized liquid to enable the nozzle to generate the pulsed liquidjet to sequentially strip, prep and coat the part, a high-voltage electrode and a ground electrode inside the nozzle for charging the coating particles, and a human-machine interface external to the cell for receiving user commands and for controlling the pulsed liquidjet exiting from the nozzle in response to the user commands.
摘要:
A method of stripping, prepping and coating a surface includes first stripping the exiting coating from a surface, using continuous or pulsed fluid jet, followed by prepping the surface by the same fluid jet. The method also provides entraining particles into a fluid stream, if desired to generate a particle-entrained fluid stream that is directed at the surface to be stripped and prepped. The particles act as abrasive particles for prepping the surface to a prescribed surface roughness required for subsequent application of a coating to the surface. The method then entails coating the surface by electrically charging particles having the same chemical composition as the particles used to prep the surface. Finally, a charged-particle-entrained fluid stream is directed at high speed at the charged surface to coat the surface. The particles form both mechanical and electronic bonds with the surface.
摘要:
An integrated liquidjet system capable of stripping, prepping and coating a part includes a cell defining an enclosure, a jig for holding the part inside the cell, an ultrasonic nozzle having an ultrasonic transducer for generating a pulsed liquidjet, a coating particle source for supplying coating particles to the nozzle, a pressurized liquid source for supplying the nozzle with a pressurized liquid to enable the nozzle to generate the pulsed liquidjet to sequentially strip, prep and coat the part, a high-voltage electrode and a ground electrode inside the nozzle for charging the coating particles, and a human-machine interface external to the cell for receiving user commands and for controlling the pulsed liquidjet exiting from the nozzle in response to the user commands.
摘要:
An integrated liquidjet system capable of stripping, prepping and coating a part includes a cell defining an enclosure, a jig for holding the part inside the cell, an ultrasonic nozzle having an ultrasonic transducer for generating a pulsed liquidjet, a coating particle source for supplying coating particles to the nozzle, a pressurized liquid source for supplying the nozzle with a pressurized liquid to enable the nozzle to generate the pulsed liquidjet to sequentially strip, prep and coat the part, a high-voltage electrode and a ground electrode inside the nozzle for charging the coating particles, and a human-machine interface external to the cell for receiving user commands and for controlling the pulsed liquidjet exiting from the nozzle in response to the user commands.
摘要:
A method of stripping, prepping and coating a surface includes first stripping the exiting coating from a surface, using continuous or pulsed fluid jet, followed by prepping the surface by the same fluid jet. The method also provides entraining particles into a fluid stream, if desired to generate a particle-entrained fluid stream that is directed at the surface to be stripped and prepped. The particles act as abrasive particles for prepping the surface to a prescribed surface roughness required for subsequent application of a coating to the surface. The method then entails coating the surface by electrically charging particles having the same chemical composition as the particles used to prep the surface. Finally, a charged-particle-entrained fluid stream is directed at high speed at the charged surface to coat the surface. The particles form both mechanical and electronic bonds with the surface.
摘要:
A method of stripping, prepping and coating a surface comprises first stripping the exiting coating from a surface, using continuous or pulsed fluid jet, followed by prepping the surface by the same fluid jet. The method also provides entraining particles into a fluid stream, if desired to generate a particle-entrained fluid stream that is directed at the surface to be stripped and prepped. The particles act as abrasive particles for prepping the surface to a prescribed surface roughness required for subsequent application of a coating to the surface. The method then entails coating the surface by electrically charging particles having the same chemical composition as the particles used to prep the surface. Finally, a charged-particle-entrained fluid stream is directed at high speed at the charged surface to coat the surface. The particles form both mechanical and electronic bonds with the surface.
摘要:
An integrated liquidjet system capable of stripping, prepping and coating a part includes a cell defining an enclosure, a jig for holding the part inside the cell, an ultrasonic nozzle having an ultrasonic transducer for generating a pulsed liquidjet, a coating particle source for supplying coating particles to the nozzle, a pressurized liquid source for supplying the nozzle with a pressurized liquid to enable the nozzle to generate the pulsed liquidjet to sequentially strip, prep and coat the part, a high-voltage electrode and a ground electrode inside the nozzle for charging the coating particles, and a human-machine interface external to the cell for receiving user commands and for controlling the pulsed liquidjet exiting from the nozzle in response to the user commands.
摘要:
A method of stripping, prepping and coating a surface comprises first stripping the exiting coating from a surface, using continuous or pulsed fluid jet, followed by prepping the surface by the same fluid jet. The method also provides entraining particles into a fluid stream, if desired to generate a particle-entrained fluid stream that is directed at the surface to be stripped and prepped. The particles act as abrasive particles for prepping the surface to a prescribed surface roughness required for subsequent application of a coating to the surface. The method then entails coating the surface by electrically charging particles having the same chemical composition as the particles used to prep the surface. Finally, a charged-particle-entrained fluid stream is directed at high speed at the charged surface to coat the surface. The particles form both mechanical and electronic bonds with the surface.