摘要:
A micro-electro-mechanical optical device is disclosed. The micro-electro-mechanical optical device includes a micro-electro-mechanical structure coupled with an optical device. Both the micro-electro-mechanical structure and the optical device are disposed on a substrate surface. The micro-electro-mechanical structure lifts the optical device a predetermined distance above the plane of the substrate surface. Thereafter, the lifted optical device is moveable relative to the plane of the substrate surface in response to an electrostatic field generated between the optical device and the substrate.
摘要:
The invention provides tunable optical filters which incorporate a surface-micromachined out-of-plane plate having a moveable membrane with a high reflective (HR) coated mirror. The mirror defines one side of a Fabry-Perot (FP) filter cavity and is movable in a direction along an axis of the filter cavity. The other side of the filter cavity is defined by a second HR-coated mirror. In one illustrative embodiment, a first plate is formed on a substrate, and then subsequently released from the substrate and secured in a plane orthogonal to the substrate. The first HR-coated mirror is formed as part of a movable membrane supported in an opening through the first plate. The second mirror is formed on a second plate secured in another plane orthogonal to the plane of the substrate, such that the filter cavity is defined horizontally between the first and second mirrors. In another embodiment, the second mirror is formed on an endface of an external fiber, such that light from the fiber can pass from the second mirror through an opening in the second plate to the first mirror. In another possible embodiment, the second plate is eliminated and the second mirror is formed on the substrate. The first plate is then arranged over the second mirror, in a plane parallel to the substrate, and separated from the substrate by spacers, such that the filter cavity is defined vertically.
摘要:
A method for pivoting an optical device about one or more axes thereof is disclosed. Springs couple the optical device to the micro-electro-mechanical structure. A portion of the springs are fastened on the micro-electro-mechanical structure. Fastening the portion of each spring on the electromechanical structure prevents the springs from moving the optical device in a translational direction when such optical device pivots about the one or more axes.
摘要:
An optical signal processing apparatus includes at least two mirror array chips mounted on an upper surface of a base in close proximity to each other to form a compound array. Each mirror array chip includes a substrate, and a plurality of spaced-apart mirrors mounted on an upper surface of the substrate. The mirrors are movable in response to an electrical signal. A plurality of electrical leads for conduct the electrical signals to the mirrors, at least a portion of the electrical leads extending at least partially along the upper surface of the base between a lower surface of the substrate and the upper surface of the base.
摘要:
An electro-mechanical structure which controls the movement of an optical device coupled thereto is disclosed. Both the electro-mechanical structure and the optical device are disposed on a substrate surface. The electro-mechanical structure controls the movement of the optical device by first lifting the optical device a predetermined distance above the plane of the substrate surface. Thereafter, the lifted optical device is moveable relative to the plane of the substrate surface in response to an electrostatic field generated between the electro-mechanical structure and the substrate.
摘要:
A micro-electro-mechanical (MEM) optical device having a reduced footprint for increasing yield on a substrate. The MEM device includes an optical element having an outer edge and supported by a support structure disposed on a substrate. The support structure is mechanically connected to the substrate through first and second pairs of beams which move the structure to an active position for elevating the optic device above the substrate. When in an elevated position, the optical device can be selectively tilted for deflecting optic signals. The beams are connected at one end to the support structure, at the other end to the substrate and are disposed so that the first and second beam ends are located proximate the optical device outer edge. In a preferred embodiment, a stiction force reducing element is included on the outer edge of the optical device for reducing the contact area between the optic device edge and the substrate.
摘要:
Apparatus and method for increasing the concentration of a chemical substance in a fluid comprise a micro-fluidic elongated channel formed in a substrate, with the channel being in fluid-flow communication with an ambient region along its elongated dimension. In general, the fluid includes first and second chemical substances having different vapor pressures. The apparatus includes an evaporation controller for increasing the evaporation rate of the fluid from the channel into the ambient region, thereby increasing the concentration of the higher vapor pressure (HVP) substance in the portion of the fluid remaining in the channel and increasing the concentration of the lower vapor pressure (LVP) substance in the portion of the fluid evaporated into the ambient region.
摘要:
A package for hermetically sealing a micro-electromechanical systems (MEMS) device in a hybrid circuit comprise a firewall formed on a substrate for the MEMS device and which has a height defining a cavity of the package in which the MEMS device will be sealed. A second substrate spaced from the first substrate hermetically seals the cavity when the second substrate is flip-chip bonded to the first substrate and soldered to the first substrate with a thin film metal material placed on at least a top portion of the firewall. The resulting firewall MEMS device package can be further packaged using conventional CMOS packaging techniques. By hermetically sealing the cavity, the enclosed MEMS device is protected from deleterious conditions found in the environment of conventional CMOS packaging techniques which is often detrimental to MEMS device function.
摘要:
Apparatus and methods for a combined optical modulator/photodetector are disclosed. A modulator chip is attached to a photodetector chip using a non-conductive epoxy or solder. The combined modulator/photodetector can be configured in at least two ways. In one configuration, the modulator is located on the upper surface of a chip that is attached, at its lower surface, to a photodetector containing chip. In another configuration, the modulator is located on the lower surface of the modulator chip, which is again attached at its lower surface to the pbotodetector chip. By combining the modulator and photodetector in the manner described above, they can be placed in a single package, resulting in reduced packaging costs versus a separately packaged modulator and a separately packaged photodetector. Moreover, feedback from the photodetector can used to optimize the operation of micromechanical optical modulators.
摘要:
The specification describes an improved Moving Anti-Reflection Switch (MARS) device structure that largely eliminates charge build up on the movable membrane, and reduces stresses that cause curling of the membrane. The improved device uses a movable membrane made of single crystal silicon.