Abstract:
The invention relates to X-ray technology and medical diagnostics, and can be used for carrying out gamma flaw detection on various articles and piping systems. The technical result is an increase in contrast of the integrated image that is produced. A multi-element X-ray radiation detector consists of a flat multi-element scintillator in the form of a discrete set of hetero-phase luminescent elements which are arranged in the cells of a mesh made from a metal which absorbs X-ray radiation and reflects light, the increment size of which mesh corresponds to the increment size of the photo receiver matrix. The metallic mesh that forms the multi-element luminescent scintillator is made from elements having an atomic number from N=26 (iron) to N=74 (tungsten), has silver-plated coils, and separates the scintillator elements optically from one another. The coils of the mesh have a diameter from 0.06 mm to 0.16 mm, and the area of the effective cross section of the mesh is between 45% to 82%. The scintillator consists of an X-ray luminophore based on a multi-ligand oxysulphide of gadolinium-lutetium-europium with the addition of bismuth and rhenium, and also fluorine, chlorine, bromine and iodine. The process of synthesis is carried out in two stages. In the first stage, oxyhalides of the elements making up a cationic subgroup are formed by reacting the initial coprecipitated oxides of rare earth elements, Bi and Re, with ammonium halides. The resulting product is then subjected to repeated thermal treatment in an alkali chalcogenide melt.
Abstract:
The proposed illuminator relates to white-light lamps based on LEDs with remote photoluminescent converters. The illuminator comprises a heat removing base with a radiation output orifice, and the LEDs secured near the periphery of the orifice, with, arranged in series at a distance from the a concave photoluminescent converter layer and a concave light reflector, wherein the converter layer's and light reflector's concavities are oriented towards the LED's and the opening. White light mix of the LEDs' and converter layer's radiation exits via the orifice. The converter layer and reflector may have the form of a truncated ellipsoid of revolution, in particular a sphere, or a paraboloid, with a main axis perpendicular to the plane of the orifice, or a cylinder truncated by the plane of the orifice. The outside reflector' surface may have ribbed heat radiators associated with the heat removing base.
Abstract:
A multi-element X-ray radiation detector consists of a flat multi-element scintillator in the form of a discrete set of hetero-phase luminescent elements which are arranged in the cells of a mesh made from a metal which absorbs X-ray radiation and reflects light, the increment size of which mesh corresponds to the increment size of the photo receiver matrix. The metallic mesh that forms the multi-element luminescent scintillator is made from elements having an atomic number from N=26 (iron) to N=74 (tungsten), has silver-plated coils, and separates the scintillator elements optically from one another. The process of synthesis is carried out in two stages. Oxyhalides of elements making up a cationic subgroup are formed by reacting an initial coprecipitated oxides of rare earth elements, Bi and Re, with ammonium halides. The resulting product is then subjected to repeated thermal treatment in an alkali chalcogenide melt.
Abstract:
The proposed illuminator relates to white-light lamps based on LEDs with remote phosphor converters. The illuminator comprises a heat removing base with a radiation output opening, and the LEDs secured near the periphery of the opening, with, arranged in series at a distance from the LEDs, a concave phosphor converter layer, wherein the layer's concavity is oriented towards the LED's and the opening. White light formed as mix of reflected LED's radiation and phosphor's radiation exits via the opening, while white light formed as mix of LED's radiation passing through the layer and phosphor's radiation exits through the layer. The layer may have the form of a truncated ellipsoid of revolution, in particular a sphere, or a paraboloid, with a main axis perpendicular to the plane of the opening, or a cylinder truncated by the plane of the opening.
Abstract:
The proposed illuminator relates to white-light lamps based on LEDs with remote phosphor converters. The illuminator comprises a heat removing base with a radiation output opening, and the LEDs secured near the periphery of the opening, with, arranged in series at a distance from the LEDs, a concave phosphor converter layer, wherein the layer's concavity is oriented towards the LED's and the opening. White light formed as mix of reflected LED's radiation and phosphor's radiation exits via the opening, while white light formed as mix of LED's radiation passing through the layer and phosphor's radiation exits through the layer. The layer may have the form of a truncated ellipsoid of revolution, in particular a sphere, or a paraboloid, with a main axis perpendicular to the plane of the opening, or a cylinder truncated by the plane of the opening.
Abstract:
The proposed illuminator relates to white-light lamps based on LEDs with remote photoluminescent converters. The illuminator comprises a heat removing base with a radiation output orifice, and the LEDs secured near the periphery of the orifice, with, arranged in series at a distance from the a concave photoluminescent converter layer and a concave light reflector, wherein the converter layer's and light reflector's concavities are oriented towards the LED's and the opening. White light mix of the LEDs' and converter layer's radiation exits via the orifice. The converter layer and reflector may have the form of a truncated ellipsoid of revolution, in particular a sphere, or a paraboloid, with a main axis perpendicular to the plane of the orifice, or a cylinder truncated by the plane of the orifice. The outside reflector' surface may have ribbed heat radiators associated with the heat removing base.