Abstract:
A composite article includes a substrate, at least one protective layer on the substrate, and an intermediate layer between the protective layer and the substrate. The intermediate layer includes a first material that occupies a first continuous region and a second material that occupies a second continuous region next to the first continuous region. The first continuous region and the second continuous region are each in contact with the substrate and the protective layer.
Abstract:
A method of fabricating a composite powder includes forming a plurality of loose particles having discrete regions of a first material and discrete regions of a second material that is different than the first material. At least one of the first material and the second material includes a chemical precursor to a third, different material.
Abstract:
A brake assembly and a method for manufacturing a brake assembly are provided. The brake assembly includes a brake pad affixed to a substrate. The brake pad extends from the substrate to a brake pad friction surface, and includes abradable cellular metal foam with the hardened ceramic particles.
Abstract:
A composite article includes a substrate and a powder-derived composite coating on the substrate. The composite coating includes discrete regions of a first material and discrete regions of a second material. At least one of the first material or the second material is a chemical precursor.
Abstract:
A composite article includes a substrate, at least one protective layer on the substrate and an intermediate layer between the at least one protective layer and the substrate. The intermediate layer includes dense silicon oxycarbide.
Abstract:
A method for fabricating a ceramic material includes impregnating a porous structure with a mixture that includes a preceramic polymer and a filler. The filler includes at least one free metal. The preceramic polymer material is then rigidized to form a green body. The green body is then thermally treated to convert the rigidized preceramic polymer material into a ceramic matrix located within pores of the porous structure. The same thermal treatment or a second, further thermal treatment is used to cause the at least one free metal to move to internal porosity defined by the ceramic matrix or pores of the porous structure.
Abstract:
A composite article includes a substrate, at least one protective layer on the substrate and an intermediate layer between the at least one protective layer and the substrate. The intermediate layer includes dense silicon oxycarbide.
Abstract:
A composite article includes a substrate and a powder-derived composite coating on the substrate. The composite coating includes discrete regions of a first material and discrete regions of a second material. At least one of the first material or the second material is a chemical precursor.
Abstract:
A method for fabricating a ceramic material includes impregnating a porous structure with a mixture that includes a preceramic polymer and a filler. The filler includes at least one free metal. The preceramic polymer material is then rigidized to form a green body. The green body is then thermally treated to convert the rigidized preceramic polymer material into a ceramic matrix located within pores of the porous structure. The same thermal treatment or a second, further thermal treatment is used to cause the at least one free metal to move to internal porosity defined by the ceramic matrix or pores of the porous structure.
Abstract:
An article which includes a structure of a ceramic material that has a composition SiOxMzCy, where Si is silicon, O is oxygen, M is at least one metal and C is carbon and wherein x 0 and z
Abstract translation:一种制品,其包括具有组成SiO x M z C y的结构,其中Si是硅,O是氧,M是至少一种金属,C是碳,并且其中x <2,y> 0和z <1,x z不为零。