摘要:
A layered heater structure including an electrode layer and a localized tuning method for tuning the electrode layer of a layered heater structure with high precision is provided. The localized tuning method tunes the electrode layer to its proper local resistance to minimize temperature offsets on the heater surface and thus provide a desired thermal profile that is in marked contrast to conventional, non-localized resistance tuning approaches based on thickness trimming practices, such as grinding or blasting, or resistivity adjustment, such as local heat treatment.
摘要:
A layered heater structure including an electrode layer and a localized tuning method for tuning the electrode layer of a layered heater structure with high precision is provided. The localized tuning method tunes the electrode layer to its proper local resistance to minimize temperature offsets on the heater surface and thus provide a desired thermal profile that is in marked contrast to conventional, non-localized resistance tuning approaches based on thickness trimming practices, such as grinding or blasting, or resistivity adjustment, such as local heat treatment.
摘要:
A heating apparatus for regulating/controlling the surface temperature of a substrate is provided. At least a thermal pyrolytic graphite (TPG) layer is embedded in the heater to diffuse the temperature difference of the various components in the heating apparatus and provide temporal and spatial control of the surface temperature of the substrate, for a relatively uniform substrate temperature with the difference between the maximum and minimum temperature points on the substrate of less than 10° C.
摘要:
A heating apparatus for regulating/controlling the surface temperature of a substrate is provided. At least a thermal pyrolytic graphite (TPG) layer is embedded in the heater to diffuse the temperature difference of the various components in the heating apparatus and provide temporal and spatial control of the surface temperature of the substrate, for a relatively uniform substrate temperature with the difference between the maximum and minimum temperature points on the substrate of less than 10° C.
摘要:
A wafer processing apparatus characterized by having corrosion resistant connections for its electrical connections, gas feed-through channels, recessed areas, raised areas, MESA, through-holes such as lift-pin holes, threaded bolt holes, blind holes, and the like, with the special configurations employing connectors and fillers having excellent chemical resistant properties and optimized CTEs, i.e., having a coefficient of thermal expansion (CTE) that closely matches the CTE of the base substrate layer, the electrode(s), as well as the CTE of coating layer. In one embodiment, a filler composition comprising a glass-ceramic material is employed.
摘要:
A heat transfer composite including a plurality of pyrolytic graphite parts and a non-carbonaceous matrix holding the pyrolytic graphite parts in a consolidated mass. In one embodiment, the heat transfer composite includes a quantity of pyrolytic graphite parts randomly distributed in the non-carbonaceous matrix. In another embodiment, the heat transfer composite includes distinct layers of pyrolytic graphite parts disposed in between the layers of sheets comprising non-carbonaceous materials. In still another embodiment, the heat transfer composite comprises a substrate containing at least one non-carbonaceous matrix containing at least one pyrolytic graphite part in a consolidated mass. The matrix is affixed to the substrate for conveying heat away from a heat source.
摘要:
A heat sink assembly for an electronic device or a heat generating device(s) is constructed from an ultra-thin graphite layer. The ultra-thin graphite layer exhibits thermal conductivity which is anisotropic in nature and is greater than 500 W/m° C. in at least one plane and comprises at least a graphene layer. The ultra-thin graphite layer is structurally supported by a layer comprising at least one of a metal, a polymeric resin, a ceramic, and a mixture thereof, which is disposed on at least one surface of the graphite layer.
摘要:
A high thermal conductivity/low coefficient of thermal expansion thermally conductive composite material for heat sinks and an electronic apparatus comprising a heat sink formed from such composites. The thermally conductive composite comprises a high thermal conductivity layer disposed between two substrates having a low coefficient of thermal expansion. The substrates have a low coefficient of thermal expansion and a relatively high modulus of elasticity, and the composite exhibits high thermal conductivity and low coefficient of thermal expansion even for composites with high loadings of the thermally conductive material.
摘要:
A thermally conductive laminate comprising a first substrate, a second substrate, and a performance layer disposed between the first substrate and the second substrate. The performance layer comprising thermal pyrolytic graphite (TPG) and vias. The TPG board surface and the vias may be at least partially filled with a material comprising at least one of thermally conductive epoxy, soldering metal/alloy or brazing metal/alloy. In addition, the thermally conductive laminate may not contain a framing structure surrounding the performance layer.
摘要:
A high thermal conductivity/low coefficient of thermal expansion thermally conductive composite material for heat sinks and an electronic apparatus comprising a heat sink formed from such composites. The thermally conductive composite comprises a high thermal conductivity layer disposed between two substrates having a low coefficient of thermal expansion. The substrates have a low coefficient of thermal expansion and a relatively high modulus of elasticity, and the composite exhibits high thermal conductivity and low coefficient of thermal expansion even for composites with high loadings of the thermally conductive material.