摘要:
Memory cells having split charge storage nodes and methods for fabricating memory cells having split charge storage nodes are disclosed. A disclosed method includes forming a first trench and an adjacent second trench in a semiconductor substrate, the first trench and the second trench each defining a first sidewall and a second sidewall respectively and forming a first source/drain region in the substrate and a second source/drain region in the substrate, where the first source/drain region and the second source/drain region are formed substantially under the first trench and the second trench in the semiconductor substrate respectively. Moreover, a method includes forming a bit line punch through barrier in the substrate between the first source/drain region and the second source drain region and forming a first storage element on the first sidewall of the first trench and a second storage element on the second sidewall of the second element. A word line is formed in contact with the first storage element and the second storage element.
摘要:
Methods are provided for fabricating a split charge storage node semiconductor memory device. In accordance with one embodiment the method comprises the steps of forming a gate insulator layer having a first physical thickness and a first effective oxide thickness on a semiconductor substrate and forming a control gate electrode having a first edge and a second edge overlying the gate insulator layer. The gate insulator layer is etched to form first and second undercut regions at the edges of the control gate electrode, the first and second undercut region each exposing a portion of the semiconductor substrate and an underside portion of the control gate electrode. First and second charge storage nodes are formed in the undercut regions, each of the charge storage nodes comprising an oxide-storage material-oxide structure having a physical thickness substantially equal to the first physical thickness and an effective oxide thickness less than the first effective oxide thickness.
摘要:
A memory device includes a substrate, a first gate stack overlying the substrate, a second gate stack overlying the substrate and spaced apart from the first gate stack, an oxide region formed at a first depth within the substrate and between the first and second gate stacks, and an impurity doped region formed at a second depth within the substrate and between the first and second gate stacks, the first depth being lower than the second depth.
摘要:
Memory cells having split charge storage nodes and methods for fabricating memory cells having split charge storage nodes are disclosed. A disclosed method includes forming a first trench and an adjacent second trench in a semiconductor substrate, the first trench and the second trench each defining a first sidewall and a second sidewall respectively and forming a first source/drain region in the substrate and a second source/drain region in the substrate, where the first source/drain region and the second source/drain region are formed substantially under the first trench and the second trench in the semiconductor substrate respectively. Moreover, a method includes forming a bit line punch through barrier in the substrate between the first source/drain region and the second source drain region and forming a first storage element on the first sidewall of the first trench and a second storage element on the second sidewall of the second element. A word line is formed in contact with the first storage element and the second storage element.
摘要:
A dual charge storage node memory device and methods for its fabrication are provided. In one embodiment a dielectric plug is formed comprising a first portion recessed into a semiconductor substrate and a second portion extending above the substrate. A layer of semiconductor material is formed overlying the second portion. A first layered structure is formed overlying a first side of the second portion of the dielectric plug, and a second layered structure is formed overlying a second side, each of the layered structures overlying the layer of semiconductor material and comprising a charge storage layer between first and second dielectric layers. Ions are implanted into the substrate to form a first bit line and second bit line, and a layer of conductive material is deposited and patterned to form a control gate overlying the dielectric plug and the first and second layered structures.
摘要:
A dual charge storage node memory device and methods for its fabrication are provided. In one embodiment a dielectric plug is formed comprising a first portion recessed into a semiconductor substrate and a second portion extending above the substrate. A layer of semiconductor material is formed overlying the second portion. A first layered structure is formed overlying a first side of the second portion of the dielectric plug, and a second layered structure is formed overlying a second side, each of the layered structures overlying the layer of semiconductor material and comprising a charge storage layer between first and second dielectric layers. Ions are implanted into the substrate to form a first bit line and second bit line, and a layer of conductive material is deposited and patterned to form a control gate overlying the dielectric plug and the first and second layered structures.
摘要:
Methods are provided for fabricating a split charge storage node semiconductor memory device. In accordance with one embodiment the method comprises the steps of forming a gate insulator layer having a first physical thickness and a first effective oxide thickness on a semiconductor substrate and forming a control gate electrode having a first edge and a second edge overlying the gate insulator layer. The gate insulator layer is etched to form first and second undercut regions at the edges of the control gate electrode, the first and second undercut region each exposing a portion of the semiconductor substrate and an underside portion of the control gate electrode. First and second charge storage nodes are formed in the undercut regions, each of the charge storage nodes comprising an oxide-storage material-oxide structure having a physical thickness substantially equal to the first physical thickness and an effective oxide thickness less than the first effective oxide thickness.
摘要:
A dual charge storage node memory device and methods for its fabrication are provided. In one embodiment a dielectric plug is formed comprising a first portion recessed into a semiconductor substrate and a second portion extending above the substrate. A layer of semiconductor material is formed overlying the second portion. A first layered structure is formed overlying a first side of the second portion of the dielectric plug, and a second layered structure is formed overlying a second side, each of the layered structures overlying the layer of semiconductor material and comprising a charge storage layer between first and second dielectric layers. Ions are implanted into the substrate to form a first bit line and second bit line, and a layer of conductive material is deposited and patterned to form a control gate overlying the dielectric plug and the first and second layered structures.
摘要:
An embodiment of the present invention is directed to a memory cell. The memory cell includes a stack formed over a substrate. The stack includes a gate oxide layer and an overlying polycrystalline silicon layer. The stack further includes first and second undercut regions formed under the polycrystalline silicon layer and adjacent to the gate oxide layer. The memory cell further includes a first charge storage element formed in the first undercut region and a second charge storage element formed in the second undercut region.
摘要:
A memory device includes a substrate, a first gate stack overlying the substrate, a second gate stack overlying the substrate and spaced apart from the first gate stack, an oxide region formed at a first depth within the substrate and between the first and second gate stacks, and an impurity doped region formed at a second depth within the substrate and between the first and second gate stacks, the first depth being lower than the second depth.