摘要:
During recording of an MPEG information signal on a record carrier, transport packets (Pk) are stored in signal blocks in a track on the record carrier. x transport packets of the MPEG information signal are stored in the second block sections (SB) of y signal blocks, where x and y are integers, x≧1 and y>1, more specifically, y>x. Further, third block sections (TB) are present in one or more of the second block sections in the y signal blocks of a group for storing additional information, this additional information relating to the specific application of recording and reproducing the MPEG information signal on/from the record carrier.
摘要:
During recording of an MPEG information signal on a record carrier (40), transport packets (P.sub.k) are stored in signal blocks in a track (1) on the record carrier (40). x transport packets of the MPEG information signal are stored in the second block sections (SB) of y signal blocks, where x and y are integers, x.gtoreq.1 and y>1, more specifically, y>x. Further, third block sections (TB) are present in one or more of the second block sections in the y signal blocks of a group for storing additional information, which additional information relates to the specific application of recording and reproducing the MPEG information signal on/from the record carrier.
摘要:
During recording of an MPEG information signal on a record carrier, transport packets (Pk) are stored in signal blocks in a track on the record carrier. x transport packets of the MPEG information signal are stored in the second block sections (SB) of y signal blocks, where x and y are integers, x≧1 and y>1, more specifically, y>x. Further, third block sections (TB) are present in one or more of the second block sections in the y signal blocks of a group for storing additional information, this additional information relating to the specific application of recording and reproducing the MPEG information signal on/from the record carrier.
摘要:
During recording of an MPEG information signal on a record carrier, transport packets (Pk) are stored in signal blocks in a track on the record carrier. x transport packets of the MPEG information signal are stored in the second block sections (SB) of y signal blocks, where x and y are integers, x≧1 and y>1, more specifically, y>x. Further, third block sections (TB) are present in one or more of the second block sections in the y signal blocks of a group for storing additional information, this additional information relating to the specific application of recording and reproducing the MPEG information signal on/from the record carrier.
摘要:
A method of transmitting timing critical data via an asynchronous channel without changing any datum to be transmitted. The timing critical data can be an MPEG transport stream. The asynchronous channel can be a computer or telephone network, a digital storage media such as a digital VCR, or a digital interface. The method involves tagging each transmission unit of the data stream, before inputting to the channel, with timing information, and using the timing information at the output end of the channel to recreate the proper data timing, Various schemes are described for packing the timing information tags with each or a plurality of transmission units.
摘要:
A method of transmitting timing critical data via an asynchronous channel without changing any datum to be transmitted. The timing critical data can be an MPEG transport stream. The asynchronous channel can be a computer or telephone network, a digital storage media such as a digital VCR, or a digital interface. The method involves tagging each transmission unit of the data stream, before inputting to the channel, with timing information, and using the timing information at the output end of the channel to recreate the proper data timing. Various schemes are described for packing the timing information tags with each or a plurality of transmission units.
摘要:
A method of transmitting timing critical data via an asynchronous channel without changing any datum to be transmitted. The timing critical data can be an MPEG transport stream. The asynchronous channel can be a computer or telephone network, a digital storage media such as a digital VCR, or a digital interface. The method involves tagging each transmission unit of the data stream, before inputting to the channel, with timing information, and using the timing information at the output end of the channel to recreate the proper data timing. Various schemes are described for packing the timing information tags with each or a plurality of transmission units.
摘要:
A method of transmitting timing critical data via an asynchronous channel without changing any datum to be transmitted. The timing critical data can be an MPEG transport stream. The asynchronous channel can be a computer or telephone network, a digital storage media such as a digital VCR, or a digital interface. The method involves tagging each transmission unit of the data stream, before inputting to the channel, with timing information, and using the timing information at the output end of the channel to recreate the proper data timing, Various schemes are described for packing the timing information tags with each or a plurality of transmission units.
摘要:
Methods for the measurement and prediction of response to hepatotoxicants and carcinogens through the detection of metabolites in a mammal are provided. The metabolites can be used as biomarkers, including efficacy biomarkers, surrogate biomarkers, and toxicity biomarkers. The methods find use for early prediction of toxicity, target identification/validation, and monitoring of drug efficacy.
摘要:
A device comprising an MPEG encoder (2) is provided with a preanalyser (8) which encodes each picture with a fixed step size (Q.sub.2). The preanalyser is coupled to a computing circuit (9) which computes, for each type of (I, P, B) picture, a target value (T) for the number of bits for encoding said picture, as well as a suitable distribution of the target value among the macroblocks of the picture. A proportionally integrating control circuit (7) controls the quantization step size (Q.sub.1). Since the PI control circuit does not introduce any residual errors, the desired number of bits per picture or per group of pictures is achieved within narrow limits. The output signal is eminently suitable for recording and subsequent editing.