摘要:
An apparatus and method for cleaning a plasma source material compound from a plasma produced EUV light source collector optic which may comprise reacting the plasma source material compound with hydrogen to form a hydride of the plasma source material from the plasma source material contained in the plasma source material compound on the collector optic. The method may further comprise initiating the reacting by introducing hydrogen into a plasma formation chamber containing the collector optic, and may further comprise removing the hydride from the collector optic, e.g., by cleaning plasma action and/or plasma source material sputtering, or other means as may be determined to be effective. An apparatus and method of extending the useful life of a plasma produced EUV light source collector coating layer may comprise in situ replacement of the material of the coating layer by deposition of the coating layer material onto the coating layer.
摘要:
A device is disclosed which may comprise a system generating a plasma at a plasma site, the plasma producing EUV radiation and ions exiting the plasma. The device may also include an optic, e.g., a multi-layer mirror, distanced from the site by a distance, d, and a flowing gas disposed between the plasma and optic, the gas establishing a gas pressure sufficient to operate over the distance, d, to reduce ion energy below a pre-selected value before the ions reach the optic. In one embodiment, the gas may comprise hydrogen and in a particular embodiment, the gas may comprise greater than 50 percent hydrogen by volume.
摘要:
Systems and methods are disclosed for reducing the influence of plasma generated debris on internal components of an EUV light source. In one aspect, an EUV metrology monitor is provided which may have a heater to heat an internal multi-layer filtering mirror to a temperature sufficient to remove deposited debris from the mirror. In another aspect, a device is disclosed for removing plasma generated debris from an EUV light source collector mirror having a different debris deposition rate at different zones on the collector mirror. In a particular aspect, an EUV collector mirror system may comprise a source of hydrogen to combine with Li debris to create LiH on a collector surface; and a sputtering system to sputter LiH from the collector surface. In another aspect, an apparatus for etching debris from a surface of a EUV light source collector mirror with a controlled plasma etch rate is disclosed.
摘要:
An apparatus and method is disclosed which may comprise a laser produced plasma EUV system which may comprise a drive laser producing a drive laser beam; a drive laser beam first path having a first axis; a drive laser redirecting mechanism transferring the drive laser beam from the first path to a second path, the second path having a second axis; an EUV collector optical element having a centrally located aperture; and a focusing mirror in the second path and positioned within the aperture and focusing the drive laser beam onto a plasma initiation site located along the second axis. The apparatus and method may comprise the drive laser beam is produced by a drive laser having a wavelength such that focusing on an EUV target droplet of less than about 100 μm at an effective plasma producing energy if not practical in the constraints of the geometries involved utilizing a focusing lens. The drive laser may comprise a CO2 laser. The drive laser redirecting mechanism may comprise a mirror.
摘要:
Systems and methods are disclosed for reducing the influence of plasma generated debris on internal components of an EUV light source. In one aspect, an EUV metrology monitor is provided which may have a heater to heat an internal multi-layer filtering mirror to a temperature sufficient to remove deposited debris from the mirror. In another aspect, a device is disclosed for removing plasma generated debris from an EUV light source collector mirror having a different debris deposition rate at different zones on the collector mirror. In a particular aspect, an EUV collector mirror system may comprise a source of hydrogen to combine with Li debris to create LiH on a collector surface; and a sputtering system to sputter LiH from the collector surface. In another aspect, an apparatus for etching debris from a surface of a EUV light source collector mirror with a controlled plasma etch rate is disclosed.
摘要:
An apparatus and method is disclosed which may comprise a laser produced plasma EUV system which may comprise a drive laser producing a drive laser beam; a drive laser beam first path having a first axis; a drive laser redirecting mechanism transferring the drive laser beam from the first path to a second path, the second path having a second axis; an EUV collector optical element having a centrally located aperture; and a focusing mirror in the second path and positioned within the aperture and focusing the drive laser beam onto a plasma initiation site located along the second axis. The apparatus and method may comprise the drive laser beam is produced by a drive laser having a wavelength such that focusing on an EUV target droplet of less than about 100 μm at an effective plasma producing energy if not practical in the constraints of the geometries involved utilizing a focusing lens. The drive laser may comprise a CO2 laser. The drive laser redirecting mechanism may comprise a mirror.
摘要:
Systems and methods are disclosed for protecting an EUV light source plasma production chamber optical element surface from debris generated by plasma formation. In one aspect of an embodiment of the present invention, a shield is disclosed which comprises at least one hollow tube positioned between the optical element and a plasma formation site. The tube is oriented to capture debris while allowing light to pass through the tube's lumen via reflection at relatively small angles of grazing incidence. In another aspect of an embodiment of the present invention, a shield is disclosed which is heated to a temperature sufficient to remove one or more species of debris material that has deposited on the shield. In yet another aspect of an embodiment of the present invention, a system is disclosed which a shield is moved from a light source plasma chamber to a cleaning chamber where the shield is cleaned.
摘要:
A method and apparatus for debris removal from a reflecting surface of an EUV collector in an EUV light source is disclosed which may comprise the reflecting surface comprises a first material and the debris comprises a second material and/or compounds of the second material, the system and method may comprise a controlled sputtering ion source which may comprise a gas comprising the atoms of the sputtering ion material; and a stimulating mechanism exciting the atoms of the sputtering ion material into an ionized state, the ionized state being selected to have a distribution around a selected energy peak that has a high probability of sputtering the second material and a very low probability of sputtering the first material. The stimulating mechanism may comprise an RF or microwave induction mechanism.
摘要:
An EUV light source collector erosion mitigation system and method is disclosed which may comprise a collector comprising a multilayered mirror collector comprising a collector outer surface composed of a capping material subject to removal due to a removing interaction with materials created in an EUV light-creating plasma; a replacement material generator positioned to deliver replacement material comprising the capping material to the collector outer surface at a rate sufficient to replace the capping material removed due to the removing interaction. The replacement material generator may comprise a plurality of replacement material generators positioned to respectively deliver replacement material to a selected portion of the collector outer surface, which may comprise a sputtering mechanism sputtering replacement capping material onto the collector outer surface.
摘要:
An apparatus and method for providing bandwidth control in a narrow band short pulse duration gas discharge laser output light pulse beam producing system, producing a beam comprising laser output light pulses at a selected pulse repetition rate, is disclosed which may comprise a dispersive bandwidth selection optic selecting at least one center wavelength for each pulse determined at least in part by the angle of incidence of the laser light pulse beam containing the respective pulse on the dispersive wavelength selection optic; a tuning mechanism operative to select at least one angle of incidence of the a laser light pulse beam containing the respective pulse upon the dispersive center wavelength selection optic; the tuning mechanism comprising a plurality of incidence angle selection elements each defining an angle of incidence for a different spatially separated but not temporally separated portion of the laser light pulse to return from the dispersive center wavelength selection optic a laser light pulse comprising a plurality of spatially separated but not temporally separated portions, each portion having one of at least two different selected center wavelengths. The tuning mechanism may comprise a temporal angle of incidence selection element defining an angle of incidence for different temporally separated portions of the pulse to return from the dispersive bandwidth selection optic a laser beam comprising a plurality of temporally separated portions of each pulse, each temporally separated portion of each pulse having one of at least two different selected center wavelengths. The tuning mechanism may comprise a plurality of spatial incidence angle selection elements each defining an angle of incidence for a spatially separated but not temporally separated portion of the laser light pulse, and a plurality of temporal angle of incidence selection elements each defining at least a first angle of incidence for at least a first temporally separated portion of each spatially separated but not temporally separated portion of the pulse and a second angle of incidence for a second temporally separated but not spatially separated portion of each spatially separated portion of the pulse.