摘要:
Architectures and techniques for co-integration of heterogeneous materials, such as group III-V semiconductor materials and group IV semiconductors (e.g., Ge) on a same substrate (e.g. silicon). In embodiments, multi-layer heterogeneous semiconductor material stacks having alternating nanowire and sacrificial layers are employed to release nanowires and permit formation of a coaxial gate structure that completely surrounds a channel region of the nanowire transistor. In embodiments, individual PMOS and NMOS channel semiconductor materials are co-integrated with a starting substrate having a blanket layers of alternating Ge/III-V layers. In embodiments, vertical integration of a plurality of stacked nanowires within an individual PMOS and individual NMOS device enable significant drive current for a given layout area.
摘要:
Embodiments of an apparatus and methods for providing three-dimensional complementary metal oxide semiconductor devices comprising modulation doped transistors are generally described herein. Other embodiments may be described and claimed, which may include a modulation doped heterostructure, wherein the modulation doped heterostructure may comprise an active portion having a first bandgap and a delta doped portion having a second bandgap.
摘要:
Embodiments of an apparatus and methods for providing three-dimensional complementary metal oxide semiconductor devices comprising modulation doped transistors are generally described herein. Other embodiments may be described and claimed.
摘要:
A method of forming a notched-base spacer profile for non-planar transistors includes providing a semiconductor fin having a channel region on a substrate and forming a gate electrode adjacent to sidewalls of the channel region and on a top surface of the channel region, the gate electrode having on a top surface a hard mask. a spacer layer is deposited over the gate and the fin using a enhanced chemical vapor deposition (PE-CVD) process. A multi-etch process is applied to the spacer layer to form a pair of notches on laterally opposite sides of the gate electrode, wherein each notch is located adjacent to sidewalls of the fin and on the top surface of the fin.
摘要:
A high aspect ratio silicon structure comprises a silicon substrate (110) having a surface (111), an electrically insulating layer (120) over portions of the silicon substrate, a hardmask (130) over the electrically insulating layer, and a deep silicon trench (140) formed in the substrate. The deep silicon trench comprises a floor (141) and sidewalls (142) extending away from the floor, and the sidewalls are atomically smooth. In an embodiment, the atomically smooth sidewalls are achieved by providing a substrate having the deep silicon trench formed therein, forming a layer of water over the substrate and within the deep silicon trench, and exposing the substrate to a hydrogen fluoride vapor and to an ozone gas.
摘要:
Architectures and techniques for co-integration of heterogeneous materials, such as group III-V semiconductor materials and group IV semiconductors (e.g., Ge) on a same substrate (e.g. silicon). In embodiments, multi-layer heterogeneous semiconductor material stacks having alternating nanowire and sacrificial layers are employed to release nanowires and permit formation of a coaxial gate structure that completely surrounds a channel region of the nanowire transistor. In embodiments, individual PMOS and NMOS channel semiconductor materials are co-integrated with a starting substrate having a blanket layers of alternating Ge/III-V layers. In embodiments, vertical integration of a plurality of stacked nanowires within an individual PMOS and individual NMOS device enable significant drive current for a given layout area.
摘要:
Embodiments of the present invention describe a method of fabricating low resistance contact layers on a semiconductor device. The semiconductor device comprises a substrate having source and drain regions. The substrate is alternatingly exposed to a first precursor and a second precursor to selectively deposit an amorphous semiconductor layer onto each of the source and drain regions. A metal layer is then deposited over the amorphous semiconductor layer on each of the source and drain regions. An annealing process is then performed on the substrate to allow the metal layer to react with amorphous semiconductor layer to form a low resistance contact layer on each of the source and drain regions. The low resistance contact layer on each of the source and drain regions can be formed as either a silicide layer or germanide layer depending on the type of precursors used.
摘要:
A method of forming a notched-base spacer profile for non-planar transistors includes providing a semiconductor fin having a channel region on a substrate and forming a gate electrode adjacent to sidewalls of the channel region and on a top surface of the channel region, the gate electrode having on a top surface a hard mask. a spacer layer is deposited over the gate and the fin using a enhanced chemical vapor deposition (PE-CVD) process. A multi-etch process is applied to the spacer layer to form a pair of notches on laterally opposite sides of the gate electrode, wherein each notch is located adjacent to sidewalls of the fin and on the top surface of the fin.
摘要:
Embodiments of an apparatus and methods for providing three-dimensional complementary metal oxide semiconductor devices comprising modulation doped transistors are generally described herein. Other embodiments may be described and claimed.
摘要:
Embodiments of an apparatus and methods for forming enhanced contacts using sandwiched metal structures are generally described herein. Other embodiments may be described and claimed.