摘要:
What is disclosed is a system and method for enhancing a spatio-temporal resolution of a depth data stream. In one embodiment, time-sequential reflectance frames and time-sequential depth frames of a scene are received. If a temporal resolution of the reflectance frames is greater than the depth frames then a new depth frame is generated based on correlations determined between motion patterns in the sequence of reflectance frames and the sequence of depth frames. The new depth frame is inserted into the sequence of depth frames at a selected time point. If a spatial resolution of the reflectance frames is greater than the depth frames then the spatial resolution of a selected depth frame is enhanced by generating new pixel depth values which are added to the selected depth frame. The spatially enhanced depth frame is then inserted back into the sequence of depth frames.
摘要:
What is disclosed is a system and method for generating a respiration gating signal from a video of a subject for gating diagnostic imaging and therapeutic delivery applications which require respiration phase and/or respiration amplitude gating. One embodiment involves receiving a video of a subject and generating a plurality of time-series signals from the video image frames. A set of features are extracted from the time-series signals and multi-dimensional feature vectors are formed. The feature vectors are clustered. Time-series signals corresponding in each of the clusters are averaged in a temporal direction to obtain a representative signal for each cluster. One cluster is selected and a respiration gating signal is generated from that cluster's representative signal. Thereafter, the respiration gating signal is used to gate diagnostic imaging and therapeutic delivery applications which requires gating based on a threshold set with respect to either respiration phase or respiration amplitude.
摘要:
What is disclosed is a video system and method that accounts for differences in imaging characteristics of differing video systems used to acquire video of respective regions of interest of a subject being monitored for a desired physiological function. In one embodiment, video is captured using N video imaging devices, where N≧2, of respective regions of interest of a subject being monitored for a desired physiological function (i.e., a respiratory or cardiac function). Each video imaging device is different but has complimentary imaging characteristics. A reliability factor f is determined for each of the devices in a manner more fully disclosed herein. A time-series signal is generated from each of the videos. Each time-series signal is weighted by each respective reliability factor and combined to obtain a composite signal. A physiological signal can be then extracted from the composite signal. The processed physiological signal corresponds to the desired physiological function.
摘要:
What is disclosed is a system and method for identifying a patient's breathing pattern for respiratory function assessment without contact and with a depth-capable imaging system. In one embodiment, a time-varying sequence of depth maps are received of a target region of a subject of interest over a period of inspiration and expiration. Once received, the depth maps are processed to obtain a breathing signal for the subject. The subject's breathing signal comprises a temporal sequence of instantaneous volumes. One or more segments of the subject's breathing signal are then compared against one or more reference breathing signals each associated with a known pattern of breathing. As a result of the comparison, a breathing pattern for the subject is identified. The identified breathing pattern is then used to assess the subject's respiratory function. The teachings hereof find their uses in an array of diverse medical applications. Various embodiments are disclosed.
摘要:
What is disclosed is a system and method for generating a flow-volume loop for respiratory function assessment of a subject of interest in a non-contact, remote sensing environment. In one embodiment, a time-varying sequence of depth maps of a target region of a subject of interest being monitored for respiratory function is received. The depth maps are of that target region over a period of inspiration and expiration. The depth maps are processed to obtain a volume signal comprising a temporal sequence of instantaneous volumes. The time-varying volume signal is processed to obtain a flow-volume loop. Changes in a contour of the flow-volume loop are used to assess the subject's respiratory function. The teachings hereof find their uses in a wide array of medical applications where it is desired to monitor respiratory function of patients such as elderly patients, chronically ill patients with respiratory diseases and premature babies.
摘要:
A video is received of a region of a subject where a signal corresponding to respiratory function can be registered by a video device. Pixels in the region in each of the image frames are processed to identify a respiratory pattern with peak/valley pairs. A peak/valley pair of interest is selected. An array of optical flow vectors is determined between a window of groups of pixel locations in a reference image frame corresponding to a peak of the pair/valley pair and a window in each of a number of image frames corresponding to the respiratory signal between the peak and ending at a valley point. Optical flow vectors have a direction and a magnitude. A ratio is determined between upwardly pointing optical flow vectors and downwardly pointing optical flow vectors. Based on the ratio, a determination is made whether the respiration phase for that peak/valley pair is inspiration or expiration.
摘要:
What is disclosed is a system for compensating for motion induced artifacts in a physiological signal obtained from multiple videos of a first and second region of interest a subject being monitored for a desired physiological function. At least one of the videos being of the first region and at least one of the videos being of the second region. The first region being at least one area of exposed skin where a desired signal corresponding to the physiological function can be registered by a video imaging device. The second region being an area where a movement by the subject is likely to induce motion artifacts into the signal. The videos are processed to isolate pixels associated with the first and second regions. Processed pixels of the isolated first regions to obtain a composite time-series signal. From the composite signal, a physiological signal corresponding to the physiological function is extracted.
摘要:
What is disclosed is a system and method for compensating for motion induce artifacts in a physiological signal obtained from a video. In one embodiment, a video of a first and second region of interest of a subject being monitored for a desired physiological function is captured by a video device. The first region is an area of exposed skin wherein a desired signal corresponding to the physiological function can be registered. The second region is an area where movement is likely to induce motion artifacts into that signal. The video is processed to isolate pixels in the image frames associated with these regions. Pixels of the first region are processed to obtain a time-series signal. A physiological signal is extracted from the time-series signal. Pixels of the second region are analyzed to identify motion. The physiological signal is processed to compensate for the identified motion.
摘要:
What is disclosed is a system and method for determining a subject's respiratory pattern from a video of that subject. One embodiment involves receiving a video comprising N≧2 time-sequential image frames of a region of interest (ROI) of a subject where a signal corresponding to the subject's respiratory function can be registered by at least one imaging channel of a video imaging device. The ROI comprises P pixels. Time-series signals of duration N are generated from pixels isolated in the ROI. Features are extracted from the time-series signals and formed into P-number of M-dimensional vectors. The feature vectors are clustered into K clusters. The time-series signals corresponding to pixels represented by the feature vectors in each cluster are averaged along a temporal direction to obtain a representative signal for each cluster. One of the clusters is selected. A respiratory pattern is determined for the subject based on the representative signal.
摘要:
What is disclosed is a system and method for processing a video for respiratory function analysis. In one embodiment, a video is received of a region of the subject's body where a time-varying signal corresponding to the subject's respiration can be registered by the video camera. Pixels in a first batch of frames are processed to obtain a time-series signal which is filtered using a band-pass filter with a low and high cutoff frequency fL and fH, where fL and fH are a function of the subject's tidal breathing. The filtered time-series signal is analyzed to identify a next low and high cutoff frequency f′L and F′H, where fL