Intercalation Electrode Based on Ordered Graphene Planes
    3.
    发明申请
    Intercalation Electrode Based on Ordered Graphene Planes 有权
    基于有序石墨烯平面的插层电极

    公开(公告)号:US20090325071A1

    公开(公告)日:2009-12-31

    申请号:US12123529

    申请日:2008-05-20

    摘要: An intercalation electrode includes an electron current collector and graphene planes deposited normal to the surface of the current collector substrate. The graphene planes are deposited on the current collector substrate from a carbon-precursor gas using, for example, chemical vapor deposition. In an embodiment of an anode for a lithium-ion battery, the graphene planes are intercalated with lithium atoms. A lithium-ion battery may include this anode, a cathode, and a non-aqueous electrolyte. In repeated charging and discharging of the anode, lithium atoms and ions are readily transported between the graphene planes of the anode and the electrolyte.

    摘要翻译: 嵌入电极包括垂直于集电器基板的表面沉积的电子集电体和石墨烯平面。 使用例如化学气相沉积从碳前体气体将石墨烯平面沉积在集电器基板上。 在用于锂离子电池的阳极的一个实施方案中,石墨烯平面插入锂原子。 锂离子电池可以包括该阳极,阴极和非水电解质。 在阳极的反复充电和放电中,锂原子和离子容易在阳极和电解质的石墨烯平面之间传输。

    HIGH HARDNESS NANOCOMPOSITE COATINGS ON CEMENTED CARBIDE
    5.
    发明申请
    HIGH HARDNESS NANOCOMPOSITE COATINGS ON CEMENTED CARBIDE 有权
    高硬度纳米复合涂层在碳化硅上

    公开(公告)号:US20100303565A1

    公开(公告)日:2010-12-02

    申请号:US12472459

    申请日:2009-05-27

    IPC分类号: B23B27/14 B32B9/00 C23C16/32

    摘要: A method of creating adherent surface coatings on carbide cutting tools or other workpiece substrates through the development of polycrystalline diamond coatings or composite coatings comprising a refractory metal carbide and polycrystalline diamond is described. The coating is deposited through a sequenced chemical vapor deposition process, first using a specified gas mixture of hydrogen and a refractory metal halide to deposit a base layer of a refractory metal carbide. This step is followed by a second step in which polycrystalline diamond is deposited from a gas mixture comprising a hydrocarbon and hydrogen. Co-deposition of refractory metal carbide and diamond in the second step to create a toughened diamond coating is also contemplated.

    摘要翻译: 描述了通过开发包含难熔金属碳化物和多晶金刚石的多晶金刚石涂层或复合涂层在碳化物切削工具或其它工件基底上形成附着表面涂层的方法。 涂层通过有序的化学气相沉积工艺沉积,首先使用特定的氢气和难熔金属卤化物的气体混合物沉积难熔金属碳化物的基层。 该步骤之后是第二步,其中多晶金刚石由包含烃和氢的气体混合物沉积。 还考虑了在第二步骤中难熔金属碳化物和金刚石的共沉积以形成增韧的金刚石涂层。

    High hardness nanocomposite coatings on cemented carbide
    6.
    发明授权
    High hardness nanocomposite coatings on cemented carbide 有权
    硬质合金高硬度纳米复合涂层

    公开(公告)号:US08383200B2

    公开(公告)日:2013-02-26

    申请号:US12472459

    申请日:2009-05-27

    IPC分类号: C23C16/00

    摘要: A method of creating adherent surface coatings on carbide cutting tools or other workpiece substrates through the development of polycrystalline diamond coatings or composite coatings comprising a refractory metal carbide and polycrystalline diamond is described. The coating is deposited through a sequenced chemical vapor deposition process, first using a specified gas mixture of hydrogen and a refractory metal halide to deposit a base layer of a refractory metal carbide. This step is followed by a second step in which polycrystalline diamond is deposited from a gas mixture comprising a hydrocarbon and hydrogen. Co-deposition of refractory metal carbide and diamond in the second step to create a toughened diamond coating is also contemplated.

    摘要翻译: 描述了通过开发包含难熔金属碳化物和多晶金刚石的多晶金刚石涂层或复合涂层在碳化物切削工具或其它工件基底上形成附着表面涂层的方法。 涂层通过有序的化学气相沉积工艺沉积,首先使用特定的氢气和难熔金属卤化物的气体混合物沉积难熔金属碳化物的基层。 该步骤之后是第二步,其中多晶金刚石由包含烃和氢的气体混合物沉积。 还考虑了在第二步骤中难熔金属碳化物和金刚石的共沉积以形成增韧的金刚石涂层。

    Seal performance for hydrogen storage and supply systems
    7.
    发明授权
    Seal performance for hydrogen storage and supply systems 失效
    氢气储存和供应系统的密封性能

    公开(公告)号:US08251373B2

    公开(公告)日:2012-08-28

    申请号:US12504791

    申请日:2009-07-17

    IPC分类号: F16J15/12 F16J15/32

    摘要: The performance and durability of static and dynamic seals for hydrogen storage and supply systems has been improved by utilizing a spring-energized and plastic coated radial seal in combination with at least a mating surface that has been treated by one of a variety of procedures. These procedures include applying to the mating surface a low-friction, hard, and hydrogen impervious coating, chemically polishing the mating surface, and electrochemically polishing the mating surface. Each of these procedures significantly reduces, on a microscopic scale, the surface roughness of the mating surface. The seal can thus form a tighter and more gas-tight seal with the smoother mating surface so as to decrease the loss of hydrogen gas across the seal. The smoother mating surface can also improve seal life by reducing seal surface wear.

    摘要翻译: 通过利用弹簧通电和塑料涂覆的径向密封与至少已经通过各种程序之一处理的配合表面组合来改善氢储存和供应系统的静态和动态密封件的性能和耐久性。 这些方法包括向配合表面施加低摩擦,硬和不透氢的涂层,化学抛光配合表面,以及电化学抛光配合表面。 这些过程中的每一个在微观尺度上显着地减少配合表面的表面粗糙度。 因此,密封件可以与更平滑的配合表面形成更紧密和更气密的密封,以减少穿过密封件的氢气的损失。 更平滑的配合表面还可以通过减少密封表面磨损来提高密封寿命。

    SEAL PERFORMANCE FOR HYDROGEN STORAGE AND SUPPLY SYSTEMS
    8.
    发明申请
    SEAL PERFORMANCE FOR HYDROGEN STORAGE AND SUPPLY SYSTEMS 失效
    氢储存和供应系统的密封性能

    公开(公告)号:US20110012313A1

    公开(公告)日:2011-01-20

    申请号:US12504791

    申请日:2009-07-17

    IPC分类号: F16J15/32 B44C1/22 B23H11/00

    摘要: The performance and durability of static and dynamic seals for hydrogen storage and supply systems has been improved by utilizing a spring-energized and plastic coated radial seal in combination with at least a mating surface that has been treated by one of a variety of procedures. These procedures include applying to the mating surface a low-friction, hard, and hydrogen impervious coating, chemically polishing the mating surface, and electrochemically polishing the mating surface. Each of these procedures significantly reduces, on a microscopic scale, the surface roughness of the mating surface. The seal can thus form a tighter and more gas-tight seal with the smoother mating surface so as to decrease the loss of hydrogen gas across the seal. The smoother mating surface can also improve seal life by reducing seal surface wear.

    摘要翻译: 通过利用弹簧通电和塑料涂覆的径向密封件与至少已经通过各种程序之一处理的配合表面组合来改善氢储存和供应系统的静态和动态密封件的性能和耐久性。 这些方法包括向配合表面施加低摩擦,硬和不透氢的涂层,化学抛光配合表面,以及电化学抛光配合表面。 这些过程中的每一个在微观尺度上显着地减少配合表面的表面粗糙度。 因此,密封件可以与更平滑的配合表面形成更紧密和更气密的密封,以减少穿过密封件的氢气的损失。 更平滑的配合表面还可以通过减少密封表面磨损来提高密封寿命。

    LITHIUM-ION BATTERY ELECTRODES WITH SHAPE-MEMORY-ALLOY CURRENT COLLECTING SUBSTRATES
    9.
    发明申请
    LITHIUM-ION BATTERY ELECTRODES WITH SHAPE-MEMORY-ALLOY CURRENT COLLECTING SUBSTRATES 有权
    具有形状记忆合金电流收集基板的锂离子电池电极

    公开(公告)号:US20130122374A1

    公开(公告)日:2013-05-16

    申请号:US13293165

    申请日:2011-11-10

    IPC分类号: H01M4/583

    摘要: Lithium-ion battery electrode constructions use an array of nanowires (or of other long thin shapes) of active electrode material anchored at one end to a surface of a metal current collector sheet in an electrode assembly or construction. This form of active electrode material permits good contact with a liquid lithium-ion containing electrolyte that infiltrates the closely-spaced thin shapes. Stresses arising from volume changes in the long shapes with lithiation and de-lithiation of the active material is mitigated by strategic placement of shape memory apply forms between attachment surfaces of the active electrode material and other members of the electrode assembly.

    摘要翻译: 锂离子电池电极结构使用在电极组件或结构中锚定在金属集电体片的一端的活性电极材料的纳米线(或其它长薄形)的阵列。 这种形式的活性电极材料允许与含有锂离子的液体的电解质良好接触,这种电解质渗入紧密间隔的薄形状。 通过在活性电极材料的附着表面和电极组件的其它部件的附着表面之间的形状记忆应用形式的策略性布置来缓解由于活性材料的锂化和脱锂而导致的长形状体积变化引起的应力。

    NANOGRAPHENE LAYERS AND PARTICLES AND LUBRICANTS INCORPORATING THE SAME
    10.
    发明申请
    NANOGRAPHENE LAYERS AND PARTICLES AND LUBRICANTS INCORPORATING THE SAME 有权
    纳米片和颗粒和润滑剂

    公开(公告)号:US20110046026A1

    公开(公告)日:2011-02-24

    申请号:US12543418

    申请日:2009-08-18

    摘要: A method of making at least one nanographene layer is disclosed herein. The method includes selecting X hydrocarbon precursor and Y hydrogen gas (H2) such that a ratio of X/Y ranges from 0.5 to 1, the hydrocarbon precursor including at least one of CH4, C2H2 or C3H8. The method further includes submitting the hydrocarbon precursor to chemical vapor deposition using the hydrogen gas and argon gas (Ar). As a result, i) the hydrocarbon precursor reacts with the hydrogen gas and argon gas (Ar) according to the following reaction: X hydrocarbon precursor+YH2+ZAr→2X graphene+(Y+2X)H2+ZAr, where Z ranges from 5*(X+Y) to 10*(X+Y), and ii) the hydrocarbon precursor decomposes and self-assembles to form the at least one nanographene layer.

    摘要翻译: 本文公开了制备至少一个纳米石墨烯层的方法。 该方法包括选择X烃前体和Y氢气(H 2),使得X / Y的比例范围为0.5至1,烃前体包括CH 4,C 2 H 2或C 3 H 8中的至少一个。 该方法还包括使用氢气和氩气(Ar)将烃前体进行化学气相沉积。 结果,i)烃前体根据以下反应与氢气和氩气(Ar)反应:X烃前体+ YH2 + ZAr→2X石墨烯+(Y + 2X)H2 + ZAr,其中Z的范围为5 *(X + Y)〜10 *(X + Y),和ii)烃前体分解并自组装形成至少一个纳米油墨层。