摘要:
In a binocular steroscopic scanning radiographic imaging method, X-rays emitted by the same radiation source are used. The X-rays pass through a double-slit collimator to form two X-ray beam sectors, which are symmetric or asymmetric and have an angle between them. The X-ray beam sectors, after penetrating through an object under detection, are received by the left and right detector array, respectively, then converted into electric signals to be inputted to the respective image acquisition systems, and received by a computer processing system for image processing and displaying. A system corresponding to the method comprises a radiation source, a beam controller, two mutually connected arms of detector arrays, image acquisition systems connected respectively to each of the detector arrays and a computer processing system. The present invention can display the transmission images detected by each of the detector arrays as well as tomograms with different depth reconstructed from the transmission images according to the principle of parallax. The present invention is convenient, fast in detection and realizes with low cost the recognition of objects of different depths.
摘要:
In a binocular steroscopic scanning radiographic imaging method, X-rays emitted by the same radiation source are used. The X-rays pass through a double-slit collimator to form two X-ray beam sectors, which are symmetric or asymmetric and have an angle between them. The X-ray beam sectors, after penetrating through an object under detection, are received by the left and right detector array, respectively, then converted into electric signals to be inputted to the respective image acquisition systems, and received by a computer processing system for image processing and displaying. A system corresponding to the method comprises a radiation source, a beam controller, two mutually connected arms of detector arrays, image acquisition systems connected respectively to each of the detector arrays and a computer processing system. The present invention can display the transmission images detected by each of the detector arrays as well as tomograms with different depth reconstructed from the transmission images according to the principle of parallax. The present invention is convenient, fast in detection and realizes with low cost the recognition of objects of different depths.
摘要:
The present invention provides a method and system of material identification using binocular steroscopic and multi-energy transmission image. With the method, any obstacle that dominates the ray absorption can be peeled off from the objects that overlap in the direction of a ray beam. The object that is unobvious due to a relatively small amount of ray absorption will thus stand out, and the material property of the object, such as organic, mixture, metal and the like can be identified. This method lays a fundament for automatic identification of harmful objects, such as explosive, drugs, etc., concealed in a freight container.
摘要:
The present invention provides a method and system of material identification using binocular steroscopic and multi-energy transmission image. With the method, any obstacle that dominates the ray absorption can be peeled off from the objects that overlap in the direction of a ray beam. The object that is unobvious due to a relatively small amount of ray absorption will thus stand out, and the material property of the object, such as organic, mixture, metal and the like can be identified. This method lays a fundament for automatic identification of harmful objects, such as explosive, drugs, etc., concealed in a freight container.
摘要:
A photoneutron-x ray source includes a photoneutron conversion target, which outputs both photoneutrons and x-rays simultaneously. The photoneutron-x ray source includes an x-ray generator for generating an x-ray main beam that is applied to the photoneutron conversion target. The photoneutron conversion target generates photoneutrons upon the application of the x-ray main beam to the photoneutron conversion target. The photoneutron conversion target has a body that defines a passageway extending through the body and that is structured such that a first x-ray beam of the x-ray main beam can pass through the passageway without any reaction with the body, while a second x-ray beam of the x-ray main beam can enter the body and react with the body to emit the photoneutrons.
摘要:
A photoneutron conversion target for generating photoneutrons by directing an x-ray beam at the photoneutron conversion target includes an elongated body having a first end and a second end. When the photoneutron conversion target is in use, the x-ray beam enters the body and propagates in a direction from the first end to the second end. The body of the photoneutron conversion target is shaped such that propagation of the x-ray beam is substantially proportionate to an intensity distribution of the x-ray beam, so that the greater an intensity of x-rays of the x-ray beam, the greater the propagation distance of the x-rays within the body of the photoneutron conversion target. The photoneutron conversion target according to the invention can make full use of the x-ray beam so as to increase a yield of photoneutrons.
摘要:
A method and a system for contraband detection in an object using photoneutrons and x-rays includes an x-ray generator that generates an x-ray main beam including a first x-ray beam and a second x-ray beam, the first x-ray beam being directed to pass through the object. A photoneutron conversion target is arranged to receive the second x-ray beam so as to generate photoneutrons, the photoneutrons being directed to enter the object and react with the object to emit characteristic γ-rays. An x-ray detecting arrangement is arranged to receive the first x-ray beam that has passed through the object in order to perform x-ray imaging detection of the detected object. A γ-ray detecting arrangement is arranged to receive the characteristic γ-rays in order to perform neutron detection of the object based on the characteristic γ-rays. The x-ray imaging detection and the neutron detection are simultaneously performed.
摘要:
A photoneutron conversion target for generating photoneutrons by directing an x-ray beam at the photoneutron conversion target includes an elongated body having a first end and a second end. When the photoneutron conversion target is in use, the x-ray beam enters the body and propagates in a direction from the first end to the second end. The body of the photoneutron conversion target is shaped such that propagation of the x-ray beam is substantially proportionate to an intensity distribution of the x-ray beam, so that the greater an intensity of x-rays of the x-ray beam, the greater the propagation distance of the x-rays within the body of the photoneutron conversion target. The photoneutron conversion target according to the invention can make full use of the x-ray beam so as to increase a yield of photoneutrons.
摘要:
A photoneutron-x ray source includes a photoneutron conversion target, which outputs both photoneutrons and x-rays simultaneously. The photoneutron-x ray source includes an x-ray generator for generating an x-ray main beam that is applied to the photoneutron conversion target. The photoneutron conversion target generates photoneutrons upon the application of the x-ray main beam to the photoneutron conversion target. The photoneutron conversion target has a body that defines a passageway extending through the body and that is structured such that a first x-ray beam of the x-ray main beam can pass through the passageway without any reaction with the body, while a second x-ray beam of the x-ray main beam can enter the body and react with the body to emit the photoneutrons.
摘要:
A radiation inspection system is disclosed. The radiation inspection system comprises: an inspection passage through which a moving object under inspection can pass, a radiation source disposed on a side of the inspection passage for emitting radiation, an array of detectors disposed on the other side of the inspection passage opposite to the radiation source for receiving the radiation emitted from the radiation source, a detector for detecting the moving object, and a controller for receiving a signal from the detector and controlling the radiation source to emit radiation when the detector detects the moving object for radiation imaging and inspection of the moving object. According to the radiation inspection system, the controller can control the radiation source to automatically emit radiation beam based on the detection signal from the detector for inspecting the moving object. As a result, inspection efficiency is improved, safety is increased, and misoperation of the radiation source is eliminated.