摘要:
The present invention relates to a non-amphiphile-based water-in-water emulsion composition. The non-amphiphile-based water-in-water emulsion composition includes a water-soluble polymer, a non-amphiphilic lyotropic mesogen encapsulated by the water-soluble polymer; and water. In one embodiment, the non-amphiphilic lyotropic mesogen includes, without limitation, a lyotropic chromonic liquid crystal, and more specifically disodium cromoglycate (DSCG). In another embodiment, the water-soluble polymer can include, without limitation, a polyacrylamide, a polyol, a polyvinylpyrrolidone, a polysaccharide, or a water-soluble fluoride-bearing polymer. The present invention also relates to a porous hydrogel made with the use of the non-amphiphile-based water-in-water emulsion. The present invention further relates to using the emulsion and hydrogel for various applications.
摘要:
A method for inhibiting the growth of a microorganism using an effective amount of one or more of the following synthetic brominated furanones: (i) 4-bromo-5Z-(bromomethylene)-3-methylfuran-2-one; (ii) 3-(dibromomethyl)-5-(dibromomethylene)furan-2-one; (iii) 3-(bromomethyl)-5-(dibromomethylene)furan-2-one; (iv) 4-bromo-3-(bromomethyl)-5Z-(bromomethylene)furan-2-one; or (v) 4-bromo-5-(dibromomethyl)-3-methylfuran-2(5H)-one. The brominated furanones inhibit the growth of both fungi and bacteria, including the fungal species Candida albicans, Gloeophyllum trabeum, Chaetomium globosum, and Trametes versicolor and the bacterial species Pseudomonas aeruginosa. The brominated furanones can be used topically or internally to treat human infections, and can be used to treat other objects, such as wood building supplies, to prevent fungal rot.
摘要:
A method for inhibiting the growth of a microorganism using an effective amount of one or more of the following synthetic brominated furanones: (i) 4-bromo-5Z-(bromomethylene)-3-methylfuran-2-one; (ii) 3-(dibromomethyl)-5-(dibromomethylene)furan-2-one; (iii) 3-(bromomethyl)-5-(dibromomethylene)furan-2-one; (iv) 4-bromo-3-(bromomethyl)-5Z-(bromomethylene)furan-2-one; or (v) 4-bromo-5-(dibromomethyl)-3-methylfuran-2(5H)-one. The brominated furanones inhibit the growth of both fungi and bacteria, including the fungal species Candida albicans, Gloeophyllum trabeum, Chaetomium globosum, and Trametes versicolor and the bacterial species Pseudomonas aeruginosa. The brominated furanones can be used topically or internally to treat human infections, and can be used to treat other objects, such as wood building supplies, to prevent fungal rot.
摘要:
Liquid crystal compositions that exhibit little or no toxicity with respect to cells include liquid crystals with chemical functional groups such as fluorine atoms, fluorophenyl groups, or difluorophenyl groups. Liquid crystals with little or no toxicity to cell lines may be added to cell culture media or added to components used in cell culture media. Cells may be grown in cell culture media that includes liquid crystals that exhibit little or no toxicity to cells.
摘要:
Synthetic disaccharide hydrocarbons (DSHs) that reactive bacterials swarming motility and inhibit bacterial adhesion and biofilm formation. A library of DSHs were tested in several experiment for the impact on various Pseudomonas aeruginosa populations and compared against existing compounds to determine efficacy and utility. Certain DSHs were also to determine the ability to clear bacteria in a mouse pneumonia model.
摘要:
Alkanethiols of formula (1) and the enantimomers of the alkanethiol of formula (1): HS-L-Q-T (1), and disulfides of formula (3) and the enantimomers of the disulfide of formula (3): T-Q-L-S—S-J (3), where -T is a moiety of formula (2) R1 and R2 are each individually selected from the group consisting of H and OH; a is 0 to 3; b is 0 to 3; and indicates that the chirality of the carbon atom to which it is attached is either R or S; may form inert surfaces that prevent the unwanted adsorption of proteins and cells.
摘要:
A library of unnatural squarylated homoserine lactones (SHLs) and squarylated lactones that bear potential to modulate biofilm formation in Gram negative bacteria. At low concentrations (˜200 μM), these small molecules inhibit biofilm formation of E. coli. Moreover, these compounds are not toxic up to 300 μM and do not significantly attenuate E. coli growth. The SHLs have potential to disperse established biofilm and demonstrate an enhanced reduction (˜50%) of the maximum biofilm thickness by use of SHLs during biofilm growth.
摘要:
Liquid crystal compositions that exhibit little or no toxicity with respect to cells include liquid crystals with chemical functional groups such as fluorine atoms, fluorophenyl groups, or difluorophenyl groups. Liquid crystals with little or no toxicity to cell lines may be added to cell culture media or added to components used in cell culture media. Cells may be grown in cell culture media that includes liquid crystals that exhibit little or no toxicity to cells.
摘要:
A system and method for preventing protein aggregation is developed by covalent modification of proteins with organic molecules that can preserve the native protein folding. Proteins are covalently modified with sugar alcohols or cyclodextrins (organic Kosmotropes) or other small molecule drugs by water-driven bioorganic reactions in water. In the water-driven bioorganic reactions, the reagent is stable in water and can modify lysine residues or cysteine residue of a protein at physiological conditions with high yield and fast rate. Proteins and antibodies will be modified by non-natural sugar alcohols. As a result, the efficacy of protein drugs (reduction in aggregation and enzymatic degradation, and increase in blood stream life time) may be improved.
摘要:
Synthetic disaccharide hydrocarbons (DSHs) that reactive bacterials swarming motility and inhibit bacterial adhesion and biofilm formation. A library of DSHs were tested in several experiment for the impact on various Pseudomonas aeruginosa populations and compared against existing compounds to determine efficacy and utility. Certain DSHs were also to determine the ability to clear bacteria in a mouse pneumonia model.