摘要:
A memory and a method of fabricating the same are provided. The memory is disposed on a substrate in which a plurality of trenches is arranged in parallel. The memory includes a gate structure and a doped region. The gate structure is disposed between the trenches. The doped region is disposed at one side of the gate structure, in the substrate between the trenches and in the sidewalls and bottoms of the trenches. The top surface of the doped region in the substrate between the trenches is lower than the surface of the substrate under the gate structure by a distance, and the distance is greater than 300 Å.
摘要:
A memory and a method of fabricating the same are provided. The memory is disposed on a substrate in which a plurality of trenches is arranged in parallel. The memory includes a gate structure and a doped region. The gate structure is disposed between the trenches. The doped region is disposed at one side of the gate structure, in the substrate between the trenches and in the sidewalls and bottoms of the trenches. The top surface of the doped region in the substrate between the trenches is lower than the surface of the substrate under the gate structure by a distance, and the distance is greater than 300 Å.
摘要:
A method of fabricating a semiconductor device is provided. First, a stacked structure is formed on a substrate. The stacked structure includes, from the substrate, a dielectric layer and a conductive gate in order. An ion implant process is performed to form doped regions in the substrate on the opposite sides of the stacked structure. Thereafter, source-side spacer is formed on a sidewall of the stacked structure. A thermal process is performed to activate the doped regions, thereby forming a source in the substrate under the sidewall of the stacked structure having the source-side spacer and a drain in the substrate on another side of the stacked structure.
摘要:
A flash memory cell includes a silicon substrate having a main surface, a source region in a portion of the silicon substrate proximate the main surface and a drain region in a portion of the silicon substrate proximate the main surface. The drain region is spaced apart from the source region. The memory cell includes a first dielectric layer formed on the main surface, a floating gate disposed above the first dielectric layer, an inter-gate dielectric layer disposed above the floating gate, a control gate disposed above the inter-gate dielectric layer, a second dielectric layer and a low-k dielectric spacer layer disposed on the second dielectric layer. The first dielectric layer covers a portion of the main surface between the source and the drain. The second dielectric layer surrounds outer portions of the first dielectric layer, the control gate, the inter-gate dielectric layer and the floating gate.
摘要:
A memory array including a plurality of memory cells, a plurality of word lines, a dummy word line, and a plug is provided. Each word line is coupled to corresponding memory cells. A dummy word line is directly adjacent to an outmost word line of the plurality of word lines. The plug is located between the dummy word line and the outmost word line.
摘要:
A memory array including a plurality of memory cells, a plurality of word lines, a dummy word line, at least a first conductive region and at least a first plug is provided. Each word line is coupled to corresponding memory cells. A dummy word line is directly adjacent to an outmost word line of the plurality of word lines. The first conductive region is disposed only between the dummy word line and the outmost word line. The first plug is located between the dummy word line and the outmost word line.
摘要:
A method of fabricating a semiconductor device is provided. First, a stacked structure is formed on a substrate. The stacked structure includes, from the substrate, a dielectric layer and a conductive gate in order. An ion implant process is performed to form doped regions in the substrate on the opposite sides of the stacked structure. Thereafter, source-side spacer is formed on a sidewall of the stacked structure. A thermal process is performed to activate the doped regions, thereby forming a source in the substrate under the sidewall of the stacked structure having the source-side spacer and a drain in the substrate on another side of the stacked structure.
摘要:
A flash memory comprising a substrate, a stacked structure over the substrate, a source, a drain and a source-side spacer is provided. The stacked structure includes a tunneling oxide layer, a floating gate on the tunneling oxide layer, an inter-gate dielectric layer on the floating gate and a control gate on the inter-gate dielectric layer. The source and the drain are disposed in the substrate on the sides of the floating gate, respectively. The source-side spacer is disposed on a sidewall of the stacked structure near the source, thereby preventing the tunneling oxide layer and the inter-gate dielectric layer near the source from being re-oxidized, resulting in an increased thickness.
摘要:
A data writing method for flash memories suitable for a flash memory using a switching unit to control a bit line thereof is disclosed. The data writing method for flash memories includes applying a square wave signal to a word line of the flash memory and applying a descent wave signal to the switching unit for the bit line of the flash memory to receive a fixed drain voltage.
摘要:
A method for forming a buried diffusion layer with reducing topography in a surface of a semiconductor substrate is provided. A patterned first dielectric layer is formed on a semiconductor substrate for being used as a first hard mask. A thermal oxidation process is performed to form field oxides on the exposed potions of the semiconductor substrate. The patterned first dielectric layer is then removed. A second patterned dielectric layer is formed on the field oxides and the semiconductor substrate for being used as a second hard mask. An isotropic etching process is performed to etch the exposed portions of the field oxides and the semiconductor substrate. The patterned second dielectric layer and the underlying field oxides are removed to form a plurality of trenches on the surface of the semiconductor substrate. A buried diffusion layer is formed along surroundings of the trenches in the semiconductor substrate.